Handbuch
Die in diesen Unterlagen enthaltenen Angaben und Daten können ohne vorherige Ankündigung geän-
dert werden. Die ggf. in den Beispielen verwendeten Namen und Daten sind frei erfunden, soweit
nichts anderes angegeben ist. Ohne ausdrückliche schriftliche Erlaubnis der DataKustik GmbH darf
kein Teil dieser Unterlagen für irgendwelche Zwecke vervielfältigt oder übertragen werden, unabhän-
gig davon, auf welche Art und Weise oder mit welchen Mitteln, elektronisch oder mechanisch dies ge-
schieht.

© DataKustik GmbH. Alle Rechte vorbehalten.

Gilching, 2016 (2.5.111)

CadnaR ist ein eingetragenes Warenzeichen der Datakustik GmbH, Gilching, Deutschland.
Inhaltsverzeichnis

Lizenzbedingungen .. 7

Kapitel 1 - Einführung
CadnaR - Prognose von Schallpegeln in Räumen 11
Gliederung dieses Handbuchs 15
Neue Funktionen von CadnaR 2.5 17
Systemanforderungen ... 21
CadnaR kennenlernen .. 25

Kapitel 2 - Installation
CadnaR installieren .. 27
Sentinel Admin Control Center 31
Sprachauswahl ... 35

Kapitel 3 - Mit CadnaR arbeiten
Das Hauptfenster von CadnaR .. 37
Symbolleiste .. 39
Werkzeugkasten ... 41
Maßstab und Zoom ... 43
Tastatur ... 45
Maustasten ... 47
Steuerungselemente .. 49
Online-Hilfesystem ... 51

Kapitel 4 - Objekte bearbeiten
Objekte eingeben .. 53
Objekte grafisch bearbeiten ... 55
 Objekte verschieben .. 59
 Objekte drehen .. 61
 Objekte duplizieren .. 63
Objekte editieren ... 65
Objekte löschen ... 67

Kapitel 5 - CadnaR-Objekte
Gemeinsame Eingabedaten .. 69
Punktquelle ... 81
Linienquelle .. 85
Flächenquelle .. 89
Vertikale Flächenquelle .. 93
Quaderquelle .. 95
Hindernisquader ... 97
Schirm .. 99
Immissionspunkt ... 101
Rechengebiet ... 113
Immissionspunktkette .. 115
Bitmap .. 123
Pegelrahmen .. 127
Textrahmen .. 129
Ausschnitt ... 131
Hilfspinolygon ... 133
Symbol .. 135
Höhenpunkt ... 139
Höhenlinie .. 141
PolyMesh .. 143

Kapitel 6 - Objekte verändern
Dialogoptionen ... 149
Aktionen ... 153
 Löschen ... 153
 Attribut verändern .. 155
 Duplizieren .. 163
 Erzwinge Rechteck .. 165
 Erzwinge rechte Winkel .. 167
 Punktereihenfolge ändern ... 169
 Spline ... 171
Stich ... 173
Zerstückeln ... 175
Verbinde Linien ... 177
Transformation ... 179
Umwandeln in .. 187
Erzeuge Etikett .. 189
Paralleles Objekt .. 195
Aktivierung .. 197
Lösche Duplikate .. 199
Kontextmenü .. 203

Kapitel 7 - Berechnungsverfahren
Schallteilchen .. 209
Spiegelquellen .. 217
Berechnung nach VDI 3760 225
Diffusfeld-Verfahren ... 229
Raumakustische Gütemaße 233

Kapitel 8 - Projektorganisation
Gruppen .. 241
Gruppendefinition .. 243
ObjectTree ... 247
Teilpegellisten .. 257
Varianten .. 259

Kapitel 9 - Referenz
Menübefehle .. 265
Menü Datei ... 265
Menü Bearbeiten ... 313
Menü Berechnung ... 315
Menü Eigenschaften .. 341
Menü Raster ... 401
Menü Voxelgitter ... 419
Menü Tabellen .. 421
Schlüsselwörter ... 477
Inhaltsverzeichnis

Schlüsselwörter für Projektdaten .. 479
Schlüsselwörter für Tabellen & Ausdruck 481
Objekt-Attribute ... 487

Index ... 493
Wichtiger Hinweis: Bitte lesen Sie diese Softwarelizenzbedingungen sorgfältig durch, bevor Sie die Software in Betrieb nehmen. Indem Sie diese Software installieren, erklären Sie Ihr Einverständnis mit den Bestimmungen der nachstehenden Lizenzbedingungen. Wenn Sie nicht mit allen Bestimmungen der Lizenzbedingungen einverstanden sind, sind Sie nicht berechtigt diese Software zu verwenden. In diesem Fall geben Sie die Software bitte innerhalb einer Woche gegen Rückerstattung oder Gutschrift des Kaufpreises dort zurück, wo Sie diese erworben haben.

5. NUTZUNG DER WARENZEICHEN: Der Kunde kann die Warenzeichen und Handelsbezeichnungen, die DataKustik GmbH verwendet, zur Identifizierung der Ausdrucke benutzen, soweit diese auf einem elektronischen Drucksystem unter Verwendung der lizenzierten Software erstellt wurden, wenn er diese Warenzeichen und Handelsnamen in der gleichen Art und Weise wie DataKustik GmbH identifiziert und den Gebrauch dieser Warenzeichen und Handelsnamen nach Beendigung dieses Lizenzvertrages einstellt.

6. ÄNDERUNGSVERBOT: Der Kunde darf an der lizenzierten Software keine Änderungen vornehmen oder durch Dritte vornehmen lassen. Es ist untersagt die Software zu dekompilieren, zurückzuentwickeln oder zu disassemblieren.

8. SCHADENSERSATZANSPRUCH: Die Schutz- und Urheberrechte

10. SCHUTZRECHTE DRITTER: Wird der Kunde von Dritten wegen angeblicher Verletzung eines dem Dritten an der lizenzierten Software zustehenden Patent-, Urheber- oder sonstigen Schutzrechtes in Anspruch genommen, wird DataKustik GmbH unverzüglich schriftlich über die behauptete Schutzrechtsverletzung informiert und Data-

CadnaR ist ein eingetragenes Warenzeichen der DataKustik GmbH.
Kapitel 1 - Einführung

1.1 CadnaR - Prognose von Schallpegeln in Räumen

Das Software-Programm **CadnaR** ist ein schlagkräftiges Werkzeug für alle, die sich mit der schalltechnischen Planung und der raumakustischen Beurteilung von Räumen befassen. **CadnaR** entspricht dem neuesten Stand der Technik und deckt mit seinen Leistungsmerkmalen eine Vielzahl von Anwendungsbereichen ab:

- Berechnung der Schallbelastung an Arbeitsplätzen aus den vom Maschinenhersteller nach EU-Richtlinie 2006/42/EC anzugebenden Emissionskennwerten unter Berücksichtigung von geometrischer Anordnung, Raumgeometrie und Raumausstattung
- gezielte Planung und Beurteilung von Lärmminderungsmaßnahmen wie Layout-Änderung, Abschirmung durch Stellwände, schallabsorbierende Verkleidung von Wand- und Deckenbereichen, Änderung von Emissionswerten und anderes
- schalltechnische Beurteilung von Alternativen bei der Planung von Bürolandschaften, Callcentern, Räumen mit Publikumsverkehr usw.
- Unterstützung bei der Auswahl und Kosten-Nutzen-Analyse von schallabsorbierenden Decken und Wandverkleidungen durch integrierte Produktbibliothek mit Absorptionsdaten
- Prüfung der Konsequenzen von Umplanungen technischer Einrichtung durch Berechnung der flächigen Lärmverteilung (Lärmkarten)
- Berechnung raumakustischer Gütemaße (T30, T20, T10, EDT, D50, C50, C80, STI, STIPA, ALcons%, CSI) auf Basis der Echogramme und Abklingkurven für Immissionspunkte
CadnaR besteht aus einem Basismodul, dessen Funktionsumfang durch eine oder mehrere der folgender Optionen erweitert werden kann:

<table>
<thead>
<tr>
<th>CadnaR</th>
<th>Funktionsumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>Das CadnaR Basis Modul ist die Voraussetzung für die Nutzung der CadnaR Optionen. Ohne den Zukauf von weiteren Optionen kann das CadnaR Basis Modul für einfache Berechnungen an einzelnen Immissionspunkten genutzt werden.</td>
</tr>
<tr>
<td>Calculation & Handling</td>
<td>Mit dieser Option wird die Leistungsfähigkeit von CadnaR erheblich erhöht. Weitere Berechnungsverfahren, zusätzliche Objekttypen und die Möglichkeit zur Rasterberechnung (2D und 3D) ermöglichen eine Vielzahl von Analysemöglichkeiten.</td>
</tr>
<tr>
<td>Visualization</td>
<td>Diese Option ermöglicht die visuelle Analyse der Berechnung (3D-Strahldarstellung, „Teilchen Ping-Pong“ etc.) und die Überprüfung der Ergebnisse in der 3D-Ansicht. Zusätzliche Funktionen: Bitmap Import und stereoskopische 3D-Ausgabe für 3D-Fernseher und -Monitore.</td>
</tr>
<tr>
<td>Project Organization</td>
<td>Alle Funktionen, die das gleichzeitige Verändern von Eigenschaften (Geometrie, akustische Parameter etc.) mehrerer Objekte oder das Vergleichen von Szenarien ermöglichen, sind in dieser Option enthalten (auch: Teilpegel). Die Zusammenfassung von mehreren Objekten in Gruppen und die hierarchische Strukturierung dieser Gruppen mittels des „ObjectTree“ ermöglicht eine äußerst effiziente Projektorganisation.</td>
</tr>
</tbody>
</table>
Zudem sind (seit Version 2.4) folgende Optionen verfügbar:

<table>
<thead>
<tr>
<th>CADNA</th>
<th>Funktionsumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET</td>
<td>Mit dem Expertensystem Option SET können die Spektren des Schallleistungspegels auf Grundlage der technischen Systemparameter einer Schallquelle (z.B. Leistung in kW, Volumenstrom in m³/h, Drehzahl in 1/min usw.) automatisch berechnet werden. Sie erhalten damit ein einzigartiges System zur Modellierung der verschiedenartigen Schallquellen.</td>
</tr>
</tbody>
</table>
CadnaR ist durch folgende Eigenschaften und Leistungsmerkmale gekennzeichnet:

- beliebige Raumgeometrien möglich (bei Verfahren "Spiegelquellen" oder "Teilchen")
- Punkt-, Linien-, Flächen- und Quaderquellen zur Eingabe der Anordnung und Geometrie von Maschinen und anderen Quellstrukturen
- Berücksichtigung der Richtwirkung bei Punktquellen (vereinfacht oder in 5°-Schritten)
- Schirm und Hindernisquader als abschirmende Objekte im Raum
- Berücksichtigung der Reflexion/Absorption an Hindernissen
- Berücksichtigung der lokalen Absorptionsverteilung auf allen Raumbegrenzungsflächen
- Eingabe des frequenzabhängigen Absorptionsgrads oder Anwahl eines Produktspezifischen Absorptionsgrad-Spektrums für Wand und Deckenflächen (auch für beliebige Teilflächen)
- vom Nutzer ergänzbare Bibliothek mit Absorptionsdaten nach DIN EN ISO 354, mit Produktsfilter nach Eigenschaften (z.B. Feuchtigkeitsresistenz, Reinigbarkeit, mechanische Stabilität usw.)
- Visualisierung der Lärmverteilung in 2- und 3-dimensionaler Darstellung (u.a. mit ungeschirmten und geschirmten Strahlordnungen)
- Volumenraster mit Projektion der Pegelverteilung auf Projektionsflächen in x, y und z-Richtung
- Berechnungsprotokoll für Immissionspunkte
- umfangreiche Druckfunktionen (Protokoll-Druck, Berichtsdruk, Grafikdruck mit Plot-Designer)

CadnaR ist damit die optimale Software für Akustiker und schalltechnische Berater, Sicherheitsfachkräfte, Lärmbeauftragte, Planer und Architekten sowie für alle mit dem Lärm in Innenräumen befassten Personenkreise.
1.2 Gliederung dieses Handbuchs

Das vorliegende Handbuch beschreibt im Kapitel 2 die lokale Installation des Programms **CadnaR** sowie die Installation des Server-Hardlocks.

Das Kapitel 3 enthält grundlegende Informationen zur Programmoberfläche und zu Werkzeug- und Steuerelementen.

Im Kapitel 4 wird die Eingabe von **CadnaR**-spezifischen Objekten mit der Maus oder über die Tastatur beschrieben.

Kapitel 5 beschreibt alle in **CadnaR** verfügbaren Objekte und die Optionen in den Objektdialogen.

Im Kapitel 6 werden die im Dialog **Objekte verändern** verfügbaren Aktionen und die Kontextmenü-Befehle erläutert.

Das Kapitel 7 erläutert alle in **CadnaR** implementierten Berechnungsverfahren und gibt Hinweis zu den verwendeten Algorithmen.

Das Kapitel 8 beschäftigt sich mit den Programmfunktionen zur Organisation von Projekten unter Verwendung von Gruppen und Varianten.

In einem weiteren Handbuch, dem **CadnaR**-Tutorial, finden Sie detailliert beschriebene Berechnungsbeispiele zu verschiedenen Aufgabenstellungen (einschließlich Beispielseite), die mit **CadnaR** erledigt werden können. Die Beispiele werden Schritt für Schritt unter Bezug auf mitgelieferte **CadnaR**-Dateien erläutert.

Innerhalb des Handbuchs wird nicht zwischen dem **CadnaR** Basismodul und den verschiedenen **CadnaR** Optionen unterschieden, sondern immer jeweils die volle Funktionalität beschrieben. Es erfolgt also bei der Be-
schreibung einer Funktion kein Hinweis, ob diese im Basismodul oder nur in einer bestimmten Option enthalten ist (z.B. kein Hinweis der Art "erfordert die Option 'Audio' ").
1.3 Neue Funktionen von CadnaR 2.5

Die Auflistung der neuen Funktionen von CadnaR, Version 2.5, sind in folgende Bereiche gegliedert:

- Berechnung/Konfiguration
- CadnaR-Objekte
- weitere Neuerungen
- Sonstiges
- Import/Export
- CadnaR-Optionen

Bitte beachten Sie, dass einige der neuen Funktionen die entsprechende CadnaR-Option erfordern.

- Konfiguration Teilchenmodell: In der Berechnung wird das Kriterium "Max. Standardabweichung Voxel" nur noch auf "gutmütige" Voxel angewendet (d.h. nicht auf Voxel, die durch Raum, Objekte oder Rechengebiete angeschnitten sind).

- Konfiguration Teilchenmodell: Bei "Einstellungen automatisch" kann das Kriterium "Max. Standardabweichung Voxel" deaktiviert werden (zur Verkürzung der Rechenzeit bei weit entfernten oder mehrfach abgeschirmten Voxel).

- Immissionspunkt: Zugriff auf den Pegel einer Variante bzw. auf ein Oktavband des Pegelspektrums einer bestimmten Variante per Attribut möglich (z.B. LPV03 oder S_500V02)

- 3D-Symbole können jetzt auch um die x- oder y-Achse rotiert werden (Dialog Symbol und neue Attribute ROTX, ROTY)
Kapitel 1 - Einführung
1.3 Neue Funktionen von CadnaR 2.5

- Umwandeln von Höhenlinien in Höhenpunkte möglich (Dialog Objekte verändern und über Kontextmenü)

- neue Attribute für Polygonobjekte (PO_HABS, PO_HABSMIN, PO_HABSMAX, PO_CENTERX, PO_CENTERY, PO_CLOCK, PO_COMPLEX, PO_PKTANZ)

weitere Neuerungen

- neue Aktionen/Befehle "Erzwinge Rechteck" und "Erzwinge rechte Winkel" (Dialog Objekte verändern oder Kontextmenü)

- ObjectTree-Gruppen in 2D/3D verschieben/drehen: Verschieben mit Maus und Tastatur bei gedrückter STRG-Taste in 2D & 3D (Pfeiltasten & Bild auf/ab), Drehen in 2D mit ALT-Taste

- ObjectTree-Gruppen in 2D kopieren/duplizieren: Kopieren/Duplizieren in 2D per Maus mit gedrückter STRG-Taste

- ObjectTree-Gruppen in 2D/3D löschen: Das Löschen einer selektierten Gruppe löscht - wie bisher im Dialog ObjectTree|Definition - den ganzen markierten Teilbaum (nach Sicherheitsabfrage).

- ObjectTree-Gruppen: Darstellung über Menü Eigenschaften|Darstellung für Objektart "Gruppe" editierbar

- ObjectTree-Gruppen: Markierte Gruppen im Dialog ObjectTree|Definition werden jetzt auch in 2D und 3D als selekttiert angezeigt.

- ObjectTree-Gruppen: Kontextmenü-Befehl Objekte verändern (in 2D-Ansicht) wählt für "Aktivierung" die selektierte ObjectTree-Gruppe aus und gleichzeitig für die Bereiche "innerhalb", "außerhalb" und "auf dem Rand".
1.3 Neue Funktionen von CadnaR 2.5

- Textbausteine für Berechnungsduauer und Sigma werden nun pro Variante abgespeichert.
- Im Dialog **3D-Ansicht** selektierte Objekte (per Shift+Doppelklick) werden parallel in der 2D-Darstellung markiert.
- **Dialog 3D-Ansicht**: Taste F4 erzeugt Screenshot und öffnet Dialog **Speichern unter**.
- Objekte in 2D/3D-Ansicht verschieben: Selektierte Objekte können mit den Pfeiltasten in X-, Y- oder Z-Richtung verschoben werden (STRG + Pfeiltaste: Verschiebung um 1 cm, STRG + SHIFT + Pfeiltaste: Verschiebung um 10 cm).
- DWG/DXF-Importoptionen: Zusammenhängende Dreiecke können als ein Hilfspolygon (sogenannte 'Triangle List') eingelesen/gespeichert und in der 3D-Ansicht dargestellt werden.
- DWG/DXF-Importoptionen: Dreiecke mit einem Umfang kleiner X können ignoriert werden.
- Option OFFICE: jetzt ObjectTree und Gruppendarstellung möglich
- Option T: jetzt Anzeige des Dialogs **Echogramm** möglich (für T30 und T20)
Kapitel 1 - Einführung
1.3 Neue Funktionen von CadnaR 2.5
1.4 Systemanforderungen

Nachfolgend sind die Mindest- und die empfohlenen Systemanforderungen zum Betrieb von CadnaR in der 32-Bit- und in der 64-Bit-Version aufgeführt. Die Zahlen in eckigen Klammern beziehen sich auf die entsprechenden Hinweise am Ende dieser Auflistung.

- Doppelkern-Prozessor von Intel (Core 2 Serie) oder AMD (Athlon X2 Serie) [1]
- 2 GB RAM [2]
- 150 MB freier Festplattenspeicherplatz für die Programminstallation
- 1 GB freier Festplattenspeicherplatz für Projektdaten [3]
- OpenGL 3.3 Grafikkarte mit mindestens 512 MB echtem Grafikspeicher [4]
- Betriebssystem Microsoft Windows Vista [5][7]

- Mehrkern-Prozessor von Intel (Core i Serie) oder AMD (Phenom II oder FX Serie) [1]
- 4 GB RAM [2]
- 150 MB freier Festplattenspeicherplatz für die Programminstallation
- 10 GB freier Festplattenspeicherplatz für Projektdaten [3]
- OpenGL 3.3 Grafikkarte mit mindestens 1 GB echtem Grafikspeicher [4]
- Betriebssystem Microsoft Windows 7, Windows 8.1 oder Windows 10 [5][7]

- Mehrkern-Prozessor von Intel (Core i Serie) oder AMD (Phenom II oder FX Serie) mit 64-bit Erweiterung [1]
- 4 GB RAM [2]
- 150 MB freier Festplattenspeicherplatz für die Programminstallation
- 1 GB freier Festplattenspeicherplatz für Projektdaten [3]
Kapitel 1 - Einführung
1.4 Systemanforderungen

Empfohlene Konfiguration für CadnaR 64-bit

- OpenGL 3.3 Grafikkarte mit mindestens 1 GB echtem Grafikspeicher [4]
- 64-bit Betriebssystem Microsoft Windows 7, Windows 8.1 oder Windows 10 [5][6]

Hinweise

1. Es wird vorausgesetzt, dass der Prozessor über mindestens 2 Kerne verfügt und die Befehlssatzerweiterung SSE3 unterstützt. Für die Nutzung der 64-bit Version wird die jeweilige 64-bit Befehlssatzerweiterung (Intel 64 oder AMD64) benötigt.

2. Die Menge des benötigten Arbeitsspeichers hängt von der Größe des zu bearbeitenden Projekts ab.

3. Die Menge des benötigten Festplattenspeicherplatzes hängt von der Anzahl und Größe der Projekte ab.

5. Es wird vorausgesetzt, dass das jeweilige Betriebssystem auf dem aktuellen Stand gehalten wird. Dies beinhaltet die Installation des neuesten verfügbaren Updates oder Service Packs sowie aller per Windows-Update zur Verfügung gestellten und von Microsoft als "wichtig" eingestuften Updates.

CadnaR unterstützt Mehrfach-Monitore.
Kapitel 1 - Einführung
1.4 Systemanforderungen
1.5 CadnaR kennenlernen

In der Dokumentation wird davon ausgegangen, dass Sie mit Microsoft® Windows®, der Mausbetrieb und der Handhabung eines PCs vertraut sind. Sollte dies nicht der Fall sein, lesen Sie bitte in den entsprechenden Microsoft®-Handbüchern oder in der Windows®-Online-Hilfe nach.

Um CadnaR kennenzulernen, empfehlen wir Ihnen, nach der Installation vor allem folgende Kapitel in diesem Handbuch zu studieren:

- Kapitel 3 - Mit CadnaR arbeiten:
 In diesem Kapitel werden das Hauptfenster von CadnaR und dessen Symbole sowie andere Steuerelemente erläutert.

- Kapitel 4 - Objekte bearbeiten:
 Dieses Kapitel beschreibt die Eingabe von Objekten mit Hilfe der Maus oder der Tastatur.

- Kapitel 7 - Berechnungsverfahren:
 In diesem Kapitel werden alle in CadnaR verfügbaren Berechnungsverfahren im Überblick beschrieben.

Weiterhin empfehlen wir Ihnen, das separate CadnaR-Tutorial Handbuch zu studieren. Dieses enthält Berechnungsbeispiele, die Sie Schritt für Schritt durcharbeiten können, um alle wesentlichen Objekte und Funktionen von CadnaR kennenzulernen.
Kapitel 1 - Einführung
1.5 CadnaR kennenlernen
Kapitel 2 - Installation

2.1 CadnaR installieren

Gehen Sie zur Installation von CadnaR wie folgt vor:

- Melden Sie sich als Administrator an. Starten Sie dazu ggf. das Betriebssystem neu.
- Beenden Sie vor der Programminstallation alle geöffneten Programme (z.B. Virenscheduler).
- Legen Sie die CadnaR-Programm-CD in Ihr CD-Laufwerk ein (z.B. Laufwerk D:). Das Installationsprogramm wird automatisch gestartet.
- Falls das Installationsprogramm nicht automatisch startet oder bei Verwendung der Download-Version von CadnaR, starten Sie die Datei setup.exe durch Doppelklick.
- Befolgen Sie die Anweisungen auf dem Bildschirm.

Nach Abschluss der Installation befindet sich die CadnaR-Programmverknüpfung im Windows-Startmenü unter Programme\Datakustik\CadnaR.

 главное Das Programm CadnaR kann nicht von CD gestartet werden.

CadnaR ist mit einem HASP-SRM-Dongle kopiergeschützt. Installieren Sie dazu den zugehörigen Dongle-Treiber. Gehen Sie dazu wie folgt vor:

- Wechseln Sie auf das Laufwerk, in dem sich die CadnaR-Programm-CD befindet (z.B. Laufwerk D:) und dort in den Ordner Support\HASP.
- Führen Sie die Datei HASPUserSetup.exe aus. Der Dongle-Treiber wird installiert.
• Stecken Sie nach Abschluss der Treiber-Installation den HASP-SRM-Dongle auf eine freie USB-Schnittstelle.

Falls Sie einen Netzwerk-Dongle verwenden wollen, muss der o.g. Dongle-Treiber sowohl auf den lokalen Client-PCs als auch auf dem Server-PC installiert werden.

Programm-Updates
Wenn Sie ein Programm-Update erhalten, können Sie das vorhandene Programm überschreiben oder die neue Version in einem anderen Ordner installieren. Die Programm-Updates sind Vollprogramme und benötigen nicht die vorhergehende Version.

INI-Dateien

Am besten gehen Sie so vor, dass Sie CadnaR starten und dann alle gewünschten Einstellungen vornehmen, zum Beispiel die Position und Größe des CadnaR-Hauptfensters, indem Sie dieses an die entsprechende Stelle ziehen und die Größe ändern. Wenn Sie CadnaR anschließend wieder beenden, werden die Einstellungen in der CADNAR.INI gespeichert.

Neuinstallation von CadnaR
Die INI-Datei von CadnaR wird bei einer Neuinstallation (d.h. auf dem System ist keine CADNAR.INI vorhanden) im Verzeichnis APPDATA gespeichert. Dieses befindet sich, abhängig vom verwendeten Betriebssystem, an folgenden Orten: C:\Benutzer\Benutzername\AppData\Local

C:\Programme\Datakustik\CadnaR\Cadna_R_32.exe /lang=deu

Dies funktioniert auch mit anderen Sprachen, vorausgesetzt, die jeweilige Sprache ist auf dem Dongle als vorhanden kodiert.

Um die aktuell verwendete INI-Datei zu öffnen, wählen Sie den Befehl INI-Datei editieren im Menü Tabellen|Sonstiges. Die INI-Datei CADNAR.INI wird in einem Texteditor angezeigt und kann anschließend editiert werden.
Kapitel 2 - Installation
2.1 CadnaR installieren
2.2 Sentinel Admin Control Center

Das Sentinel Admin Control Center wird bei der Installation des HASP-SRM-Dongle-Treibers automatisch mitinstalliert. Das Admin Control Center wird zur Diagnose bei eventuell auftretenden Dongle-Problemen (z.B. lokaler Zugriff und im Netzwerk) und bei Änderungen der Dongle-Konfiguration benötigt.

Zur Umkodierung der Dongle-Konfiguration erhalten Sie von DataKustik eine neue Dongle-Konfigurationsdatei mit der Dateiendung *.v2c („vendor-to-customer“). Diese Konfigurationsdatei wird mit Hilfe des Sentinel Admin Control Center eingespielt und der HASP-SRM-Dongle umkodiert. Gehen Sie dann wie folgt vor:

- Beenden Sie alle Instanzen (Programmfenster) von CadnaR auf Ihrem PC.

 Bei Umkodierung eines HASP-SRM-Netzwerk-Dongles müssen alle auf diesen Netzwerk-Dongle zugreifenden Instanzen von CadnaR auf allen Client-PCs beendet werden.

- Stellen Sie sicher, dass der umzukodierende HASP-SRM-Dongle an einem freien USB-Port des momentan verwendeten PCs angeschlossen ist.

 Um einen HASP-SRM-Netzwerk-Dongle umzukodieren, entfernen Sie diesen zunächst vom Server-PC und schließen Sie ihn an den momentan verwendeten PC an.

- Starten Sie die Software im WINDOWS-Startmenü unter Programme\Datakustik\CadnaR\HASP Admin Control Center.

Das Sentinel Admin Control Center wird in Ihrem Web-Browser angezeigt.
Klicken Sie im links angezeigten Seitenmenü „Administration Options“ den Punkt „HASP Keys“ an, um die angeschlossenen Dongles in einer Liste anzuzeigen.

Es werden sowohl lokal angeschlossene als auch - falls vorhanden - im Netzwerk vorhandene Netzwerk-Dongles in der Tabelle angezeigt.
• Klicken Sie jetzt im Seitenmenü auf den Punkt „Update/Attach“.

![Sentinel Admin Control Center](image)

• Wählen Sie die von **DataKustik** übersandte V2C-Datei über die Schaltfläche „Durchsuchen“ aus.

• Klicken Sie, nachdem die Datei ausgewählt wurde, auf die Schaltfläche „Apply File“, um den Kodiervorgang zu starten.

Der Abschluss des Kodiervorgangs wird durch eine Meldung angezeigt.
Kapitel 2 - Installation

2.2 Sentinel Admin Control Center
2.3 Sprachauswahl

CadnaA ist mehrsprachig. Es kann z.Zt. in folgenden Sprachen betrieben werden:

- Deutsch
- Englisch
- Französisch
- Spanisch
- Polnisch
- Portugiesisch

Die aktuellen Sprachversionen ersehen Sie im Menü **Eigenschaften|Sprache**. Der CadnaR-Hilfetext und das Handbuch stehen zur Zeit nur in Deutsch und Englisch zur Verfügung.

Beim Start von CadnaR wird automatisch die Sprache gewählt, die der Ländereinstellung in MS-Windows entspricht. Diese Einstellung ist die Standard-Einstellung auch für CadnaR. Ist eine Sprache erforderlich, die das Programm nicht zur Verfügung stellt, wird es in englischer Sprache gestartet.

Kapitel 2 - Installation
2.3 Sprachauswahl
Kapitel 3 - Mit CadnaR arbeiten

3.1 Das Hauptfenster von CadnaR

Mit einem Doppelklick auf das Programmsymbol auf dem Windows-Desktop oder durch Klick auf den Eintrag Programme|Datakustik|CadnaR im Startmenü von MS-Windows XP, Windows VISTA oder Windows 7 wird CadnaR gestartet und das Hauptfenster angezeigt.

Die weiße Fläche auf dem Bildschirm entspricht der eingegebenen Raumgrundfläche. In der Standardeinstellung beträgt die Raumgrundfläche 30x30 m = 900 m² (siehe Dialog Raumdaten, siehe Kapitel 9.1.4.2).

Die Menüleiste dient zur Auswahl von Befehlen.
Kapitel 3 - Mit CadnaR arbeiten
3.1 Das Hauptfenster von CadnaR

Symbolleiste

Werkzeugkasten

Der Werkzeugkasten von **CadnaR** enthält alle Symbole zur Eingabe von Objekten oder zum Auslösen bestimmter Aktionen. Nach Anklicken eines Objektsymbols kann ein Objekt der gewählten Art mit der Maus am Bildschirm eingegeben werden.

Statuszeile

Die Statuszeile befindet sich im unteren Rand des **CadnaR**-Hauptfensters.

```
 00:00:07  X16.36 Y9.10 Z60.70
```
```
File version: 2.0.102 (build 373)  X83.62 Y72.28 Z56.73
```


- rechter Teil der Statuszeile: Wird der Mauszeiger über den Bildschirm bewegt, erscheinen die Koordinaten X|Y und, nach einer Berechnung, zusätzlich der Pegel oder der Wert des gewählten raumakustischen Gütemaßes für den Rasterpunkt an der Mausposition (V für „Value“).

Die Anzeige der Statuszeile kann über den Befehl **Statuszeile anzeigen** im Menü **Eigenschaften** ein- und ausgeschaltet werden.

Paralleles Arbeiten mit Maus und Tastatur

Im Hauptfenster können alle Objekte parallel mit der Maus oder über die Tastatur eingefügt und bearbeitet werden. Durch das Einfügen wird gleichzeitig ein neuer Datensatz in der entsprechenden Objekttabelle angelegt (Menü **Tabellen**).
3.2 Symbolleiste

Symbole ermöglichen das direkte Aufrufen von Menübefehlen oder Funktionen durch Anklicken. Über den Befehl **Symbolleiste anzeigen** im Menü **Eigenschaften** kann die Symbolleiste ein- und ausgeschaltet werden.

Nachfolgende Befehle stehen zur Verfügung:

- **Maßstab auswählen oder eingeben**
- **Variante auswählen**
- **Gesamtspektrum oder Oktave wählen**

und folgende Symbole:

- Öffnen einer bestehenden Datei
- Datei speichern
- Dialog **Drucken Graphik** anzeigen

kopiert die 2D-Raumansicht, den Inhalt eines markierten Ausschnitts oder markiertes Objekt aus dem **CadnaR**-Hauptfenster in die Zwischenablage

- Raumdaten editieren
- Pegel an Immissionspunkten berechnen
Nach Berechnung des Voxelgitters (siehe Kapitel 9.1.6) wird im rechten Teil der Symbolleiste ein zusätzliches Listenfeld angezeigt, um die anzuzeigende Rasterhöhe auszuwählen:

Nach Berechnung von raumakustischen Gütemaßen im Raster (siehe Kapitel 9.1.3.1, Registerkarte „RIA-Auswertung“) wird im rechten Teil der Symbolleiste ein zusätzliches Listenfeld angezeigt, um den Pegel Lp oder ein raumakustisches Gütemaß für die Rasterdarstellung auszuwählen:
3.3 Werkzeugkasten

Klicken Sie mit dem Mauszeiger auf das gewünschte Symbol, um diese Objektart auszuwählen.

Objektsymbol aktivieren

Objekte im Werkzeugkasten

Editierfunktionen:

- Bearbeitungsmodus
 (STRG+E)
- Zoom +
- Zoom -
- Zoom Umgriff

Schallquellen:

- Punktquelle
- Linienquelle
- Flächenquelle, horizontal
- Flächenquelle, vertikal
- Quaderquelle
Hindernisse:

- Hindernisquader
- Schirm

Auswerteobjekte:

- Immissionspunkt
- Rechengebiet
- Immissionspunktkette

Anzeigeobjekte:

- Bitmap
- Pegelrahmen
- Textrahmen
- Ausschnitt
- Hilfspolygon
- Symbol

Sonderobjekte:

- Höhenpunkt
- Höhenlinie
- PolyMesh

Objekttabelle öffnen

Durch Klick auf eine Objektart im Werkzeugkasten bei gleichzeitig gedrückter ALT-Taste wird die entsprechende Objekttabelle aus dem Menü **Tabellen** angezeigt.
3.4 Maßstab und Zoom

Neben dem Listenfeld „Maßstab“ auf der Symbolleiste stehen drei Zoom-Werkzeuge im CadnaR-Werkzeugkasten zur Verfügung, mit denen der Maßstab der Grafik schnell verändert werden kann. Falls eine Maus mit Rad verwendet wird, kann der Maßstab alternativ durch Drehen des Maustrades gezoomt werden.

Wählen Sie aus dem Listenfeld einen vordefinierten Maßstab aus oder geben Sie die Maßstabszahl ein. Drücken Sie nach Eingabe eines Zahlenwertes die RETURN-Taste, um den neuen Wert anzuwenden.

Mit dem Symbol „Zoom +“ aus dem Werkzeugkasten kann die grafische Darstellung für einen bestimmten Ausschnitt vergrößert werden. Es stehen zwei Vorgehensweisen zur Ausschnittsvergrößerung zur Verfügung:

1. Bei jedem Klick mit der linken Maustaste wird die Grafik um den Faktor 2 mit der Mauszeigerposition als neuem Bildschirmmittelpunkt vergrößert.

2. Bei gedrückt gehaltener linker Maustaste kann ein Viereck zur Ausschnittsvergrößerung über die gewünschten Objekte aufgezogen werden. Nach Loslassen der Maustaste wird der Ausschnitt, der innerhalb des Rechtecks liegt, auf die Abmessungen des Programmfensters vergrößert.

Durch anschließendes Klicken mit der rechten Maustaste können Sie die Vergrößerung in der gleichen Schrittfolge wieder rückgängig machen.

Mit dem Symbol „Zoom -“ aus dem Werkzeugkasten kann die grafische Darstellung für einen bestimmten Ausschnitt verkleinert werden. Bei jedem Klick mit der linken Maustaste wird die Grafik um den Faktor 2 mit der Mauszeigerposition als neuem Bildschirmmittelpunkt verkleinert. Durch anschließendes Klicken mit der rechten Maustaste können Sie die Verkleinerung in der gleichen Schrittfolge wieder rückgängig machen.
Beim Anklicken dieses Werkzeugs wird der Maßstab so angepasst, dass alle Objekte, auch wenn diese sich außerhalb des sichtbaren Bereichs befinden, im CadnaR-Programmfenster angezeigt werden. Der automatisch angepasste Maßstab hängt dabei von der Raumgrundfläche (siehe Kapitel 9.1.4.2) und der Größe des CadnaR-Hauptfensters ab.
3.5 Tastatur

Mit Hilfe der Kennbuchstaben (unterstrichene Buchstaben) können CadnaR-Menüeinträge wie folgt über die Tastatur aufgerufen werden:

• ALT-Taste gedrückt halten,
• unterstrichenen Kennbuchstaben des Menüs drücken,
• ALT-Taste wieder loslassen und danach den Kennbuchstaben des gewünschten Befehls drücken.

Um beispielsweise der Befehl Speichern aufzurufen, drücken Sie gleichzeitig die Tastenkombination ALT+d. Das Menü Datei öffnet sich. Lassen Sie jetzt beide Tasten los und drücken Sie die Taste S, um den Befehl Speichern auszulösen.
3.6 Maustasten

Klicken bedeutet, Drücken und wieder Loslassen einer Maustaste in einer einzigen Bewegung. Doppelklicken bedeutet, die linke Maustaste zweimal kurz hintereinander drücken und wieder loslassen.

Um eine Option auszuwählen, einen Befehl auszuführen, ein Objekt zu markieren oder ein Objekt-Symbol zu aktivieren, wird der Mauszeiger auf die entsprechende Option, das Symbol, den Befehl oder auf den Rand oder bei Linien auf die Mittelachse eines Objektes in der grafischen Darstellung gesteuert und mit der Maustaste angeklickt.

Falls nicht anders angegeben, beziehen sich die mit der Maus auszuführenden Arbeitsschritte stets auf die linke Taste. Wenn die Maus mit der linken Hand bedient wird oder anders konfiguriert wurde, muss stattdessen die entsprechende Maustaste betätigt werden.

In CadnaR gibt es Dialoge mit Listen (Beispiel: Menü Datei|Drucken Bericht), in denen die Möglichkeit besteht, mehrere Zeilen gleichzeitig durch Markierung auszuwählen.

Ein Klick mit der linken Maustaste auf die gewünschte Zeile. Ein Klick auf eine andere Zeile markiert diese und demarkiert die vorherige.

Ein Doppelklick auf ein vorhandenes Objekt im Bearbeitungsmodus oder auf eine Datensatzzeile in der Tabelle öffnet die jeweiligen Objektdialog, in dem die Objektparameter editiert werden können.
Mit der rechten Maustaste klicken bedeutet, die rechte Maustaste kurz zu drücken und wieder loslassen. Der rechte Mausklick hat verschiedene Funktionen, abhängig davon, in welchem Modus Sie sich befinden.

- Beim Einfügen eines Objekts mit der Maus im CadnaR-Hauptfenster wird:
 - der Einfügevorgang für das eingegebene Objekt abgeschlossen und
 - bei anschließendem einmaligen Klick mit der rechten Maustaste der Objektdialog geöffnet.

- Wird ein grafisches Objekt im Bearbeitungsmodus oder auch eine Datensatzzeile in einer Tabelle mit der rechten Maustaste angeklickt, so wird ein Kontextmenü (siehe Kapitel 6.3) eingeblendet.

Bei einer Maus mit Mausrad kann das Rad auch zum schnellen Hinein- und Herauszoomen der grafischen Darstellung benutzt werden.
3.7 Steuerungselemente

Optionsfeld

Optionsfelder sind Steuerelemente, die anzeigen, ob eine Situation wahr oder falsch ist. Falls wahr, enthält das Optionsfeld einen schwarzen Punkt. Umschaltet wird durch Anklicken mit der Maus. Bei einer Optionsgruppe kann nur eine Option zutreffen.

Kontrollkästchen

Kontrollkästchen sind Steuerelemente, die anzeigen, ob eine Situation wahr oder falsch ist. Wenn das Kontrollkästchen aktiviert wird, erscheint im Kästchen ein Häkchen, das anzeigt, dass die Situation zutrifft. Anderenfalls trifft die Situation nicht zu.

Listenfeld/Kombobox

Kapitel 3 - Mit CadnaR arbeiten

3.7 Steuerungselemente
3.8 Online-Hilfesystem

Während der Arbeit mit CadnaR ist die WINDOWS-Online-Hilfe nur einen Tastendruck entfernt.

Um die Hilfe aufzurufen,

- drücken Sie die Funktionstaste F1 (oder klicken Sie auf das Hilfesymbol in der Symbolleiste) oder

- klicken Sie auf den Hilfe-Cursor in der Symbolleiste. Daraufhin wird der Mauszeiger zum Hilfezeiger-Symbol. Nun kann auf ein Menü oder einen Menüeintrag geklickt werden oder

- klicken Sie in einem Dialog auf die Schaltfläche „Hilfe“.

Gehen Sie dazu wie folgt vor:

1. Klicken Sie in der linken Spalte der Dialogs CadnaR-Hilfe auf die Registerkarte „Index“.

Verwenden Sie nach Möglichkeit Suchbegriffe, die in Dialogfeldern oder Menüeinträgen vorhanden sind.

Gehen Sie dazu wie folgt vor:

1. Klicken Sie in der linken Spalte der Dialogs CadnaR-Hilfe auf die Registerkarte „Suchen“.

2. Geben Sie im Feld „Suchbegriffe eingeben“ den ersten und ggf. weitere Buchstaben des zu suchenden Begriffs ein.
3. Drücken Sie die RETURN-Taste oder klicken Sie auf die Schaltfläche „Themen auflisten“, um die Suche zu starten.

Kapitel 4 - Objekte bearbeiten

4.1 Objekte eingeben

Objekte sind alle grafischen Elemente, die im Werkzeugkasten von CadnaR zur Verfügung stehen und im Hauptfenster angezeigt werden. Objekte können mit der Maus, über die Tastatur oder über eine Objekttabelle eingefügt werden. Generell wird mit jedem eingegebenen Objekt ein entsprechender Eintrag in der jeweiligen Objekttabelle im Menü Tabellen erzeugt (siehe Kapitel 9.1.7 "Menü Tabellen").

Abhängig von der gewählten Objektart werden verschiedene Vorgehensweisen verwendet, um Objekte mit der Maus einzugeben.

Bei Punktobjekten (Punktquelle, Immissionspunkt, Pegelrahmen) wird das Objekt durch Klicken mit der linken Maustaste an die gewünschte Position platziert. Mit jedem Klick wird ein neues Objekt der gewählten Art platziert und ein Datensatz in der entsprechenden Objekttabelle angelegt.

Bei der Eingabe von Linienobjekten sind zu unterscheiden:

- bestehend aus beliebig vielen Stützstellen (Linienquelle): Das Objekt wird durch Klicken mit der linken Maustaste an allen Stützstellen des Polygons platziert. Die Eingabe wird durch Klicken der rechten Maustaste beendet.

Bei Flächenobjekten (Flächenquelle, Quaderquelle, Hindernisquader, Textrahmen, Ausschnitt) wird das Objekt durch Aufziehen einer Fläche bei gedrückter linker Maustaste eingegeben. Platzieren Sie dazu den Mauspfeil an die ersten Ecke des Objekts und ziehen Sie eine Fläche bis zur gegenüberliegenden Ecke des Objekts bei gedrückter linker Maustaste auf.
Zusätzlich muss im Editierdialog des Objekts oder in der entsprechenden Tabelle dessen Höhe eingegeben werden.

Tastatureingabe

Nach Auswahl des Objekts aus dem Werkzeugkasten werden die gewünschten Koordinaten unmittelbar über Tastatur eingeben. Bei Eingabe der ersten Zahl öffnet sich der Dialog **Punkteingabe**. Standardmäßig erfolgt die Eingabe als rechtwinklige Koordinaten (x,y-Wertepaare).

Bei der Eingabe mehrerer Punkte hintereinander kann zwischen Maus und Tastatur einerseits, sowie zwischen rechtwinkeligen/polaren oder absoluten/relativen Koordinaten andererseits gewechselt werden.

Dialog Punkteingabe

Standardmäßig (Optionen "Relativ" und "Polar" deaktiviert) werden die eingegebenen Koordinaten als auf den Ursprung (x,y) = (0,0) m bezogene, rechtwinklige Absolutkoordinaten (als x,y-Wertepaare) aufgefasst.

- **Option "Relativ"**: Ist diese Option aktiviert, so werden die eingegebenen Koordinaten als auf den zuletzt eingegebenen Punkt bezogene Relativkoordinaten aufgefasst.

- **Option "Polar"**: Ist diese Option aktiviert, so erfolgt die Punkteingabe in Polarkoordinaten, bestehend aus Winkel (°) und Abstand (m) zum Ursprung. Bei gleichzeitig aktivierter Option "Relativ" beziehen sich die Polarkoordinaten auf den zuletzt eingegebenen Punkt.

Tabelleneingabe

Neue Objekte können auch über die Objekttabellen erzeugt werden (siehe Kapitel 9.1.7 "Menü Tabellen"). Fügen Sie dazu über das Kontextmenü der entsprechenden Objektabelle eine neue Zeile ein und editieren Sie diese. Nach Schließen der Tabelle wird das neue Objekt in der Grafik angezeigt.
4.2 Objekte grafisch bearbeiten

Markieren Sie ein Objekt, indem Sie auf dessen Rand mit der linken oder rechten Maustaste klicken. Ein Klick mit der rechten Maustaste öffnet gleichzeitig ein Kontextmenü, in dem weitere auf das Objekt zutreffende Befehle zur Verfügung stehen. Ein Doppelklick mit der linken Maustaste öffnet den entsprechenden Objektdialog zur Eingabe der akustisch relevanten Daten.
Polygonpunktmodus (Eingabe)

Nach Aktivieren des Objekts mit der Maus (1) kann ein einzelner Polygonpunkt mit der Maus an eine neue Position gezogen werden (2).

Ist das Objekt aktiviert, so kann bei gedrückt gehalten STRG-Taste durch Klick mit der Maus ein zusätzlicher Polygonpunkt eingefügt werden (3). Bei gedrückt gehalten Tastenkombination STRG+SHIFT kann in gleicher Weise ein Polygonpunkt gelöscht werden (4).

Dehnungsmodus (Eingabe)

In diesem Modus (TAB-Taste drücken) können keine Polygonpunkte hinzugefügt, gelöscht oder verschoben werden. Der Dehnungsmodus ist an dem rechtwinkligen Rahmen aus Markierungspunkten erkennbar, der um das gesamte Objekt gezogen ist (5).
Das aktivierte Objekt kann in diesem Modus insgesamt in seiner Größe gestreckt oder gestaucht werden. Dies kann - hier für eine Streckung - nur in einer Koordinatenrichtung (6) oder in zwei Koordinatenrichtungen (7) erfolgen.

Zusätzlich kann im Dehnungsmodus die Größe des aktivierten Objekts mit Hilfe der SHIFT- und STRG-Taste verändert werden:

- **SHIFT**: symmetrische Größenänderung
- **STRG**: Größenänderung in bestimmten Sprüngen
- **SHIFT+STRG**: symmetrische Größenänderung in bestimmten Sprüngen

Im Menü **Eigenschaften|Sonstiges** kann die Darstellungsgröße der Markierungspunkte eingestellt werden (siehe Kapitel 9.1.4.14).
Kapitel 4 - Objekte bearbeiten
4.2 Objekte grafisch bearbeiten
4.2.1 Objekte verschieben

Um ein Objekt in der Grafik zu verschieben, wird dies zunächst durch Klick mit der linken Maustaste auf dessen Rand markiert und anschließend durch erneutes Drücken und Festhalten der linken Maustaste der Verschiebemodus aktiviert. Diese wird in der Grafik durch ein gepfeiltes Kreuz angezeigt:

Verschieben Sie das Objekt an die gewünschte Stelle und lassen Sie die Maustaste los.

Wird gleichzeitig die SHIFT-Taste gedrückt, so kann das aktiviertert Objekt nur in x- oder in y-Richtung (aber nicht in beide Richtungen gleichzeitig) verschoben werden.

Selektierte Objekte können bei gedrückter STRG-Taste mit den Pfeiltasten in x- (← →), y- (↑ ↓) oder z-Richtung (Bild auf, Bild ab) verschoben werden. Als Verschiebungen stehen zur Verfügung:

- STRG + Pfeiltaste/Bild auf/ab: Verschiebung um 1 cm
- STRG + SHIFT + Pfeiltaste/Bild auf/ab: Verschiebung um 10 cm.
Kapitel 4 - Objekte bearbeiten
4.2.1 Objekte verschieben
4.2.2 Objekte drehen

Die nachfolgenden Hinweise beziehen sich nur auf das Drehen von Linienobjekten. Flächige Objekte können nicht gedreht werden.

Zum Drehen eines Objekts markieren Sie dieses zunächst durch einen Klick mit der Maus. Klicken Sie dann erneut auf das Objekt bei gedrückter ALT-Taste. Es erscheint ein Teilkreis mit Pfeilenden, um darauf hinzuweisen, dass sich im Objektdrehmodus befinden (1).

Bewegen Sie jetzt die Maus bei gedrückter Maustaste zyklisch um das Objekt: Das Objekt dreht sich um einen entsprechenden Winkel (2).

Um das Objekt in Stufen von 90° zu drehen, halten Sie zusätzlich die SHIFT-Taste gedrückt.

Um das Objekt zu drehen und zu duplizieren, halten Sie die SHIFT- und die STRG-Taste gedrückt.
Kapitel 4 - Objekte bearbeiten
4.2.2 Objekte drehen
4.2.3 Objekte duplizieren

Um ein einzelnes Objekt in der Grafik zu duplizieren, wird dies zunächst durch Mausklick auf dessen Rand markiert. Lassen Sie die Maustaste los und klicken Sie bei gedrückt gehaltener STRG-Taste erneut auf das Objekt. Daraufhin wird das Objekt durch ein gepfeiltes Kreuz mit einem Plus-Zeichen markiert (1). Ziehen Sie die Kopie an eine neue Position.

Lassen Sie jetzt zuerst die linke Maustaste los und danach die STRG-Taste (bei umgekehrter Reihenfolge wird das Original lediglich verschoben). Das duplizierte Objekt ist neben dem Original in der Grafik vorhanden (2). Das Duplikat hat dieselben Eigenschaften wie das Original, aber abweichende Ortskoordinaten.

Über das objekt-spezifische Kontextmenü können Objekte mehr dupliziert werden (siehe Kapitel 6.3).
Kapitel 4 - Objekte bearbeiten
4.2.3 Objekte duplizieren
4.3 Objekte editieren

Nach Eingabe der Geometriedaten eines Objekts werden die für eine akustische Berechnung notwendigen Daten eingegeben (z.B. der Schallleistungspegel bei Quellen oder der Absorptionsgrad von Hindernissen). Diese Eingabe dieser Daten erfolgt im allgemeinen über die Tastatur im jeweiligen Objektdialog (siehe Kapitel 5 - CadnaR-Objekte).

Zum Öffnen des Objektdialogs stehen folgende Möglichkeiten zur Verfügung.

- im Einfügemodus (nach Auswahl eines Objekts aus dem Werkzeugkasten): durch einmaliges Klicken mit der rechten Maustaste auf das Objekt, entweder auf dessen Rand (z.B. bei Flächenquellen und Hindernisquadrern) oder deren Achse (z.B. Linienquelle, Schirm).

- im Editier- oder Bearbeitungsmodus (nach Klick auf das Symbol im Werkzeugkasten oder durch Drücken der Tastenkombination STRG+e):

 - durch Doppelklicken mit der linken Maustaste auf das Objekt, entweder auf dessen Rand (z.B. bei Flächenquellen und Hindernisquadrern) oder deren Achse (z.B. bei Linienquellen und Schirmen) oder

Kapitel 4 - Objekte bearbeiten
4.3 Objekte editieren
4.4 Objekte löschen

Objekte können auf drei Arten gelöscht werden:

- mit der Maus: Klicken Sie mit der rechten Maustaste auf den Rand des zu löschenden Objekt und wählen Sie aus dem Kontextmenü den Befehl **Löschen**. das Objekt wird ohne Rückfrage gelöscht.

- über die Tastatur: Klicken Sie mit der linken Maustaste auf den Rand des zu löschenden Objekt, um es zu aktivieren. Drücken Sie dann die ENTF-Taste.

Synchronisierung Grafik-Tabellen

siehe Kapitel 9.1.2 "Menü Bearbeiten"
Kapitel 4 - Objekte bearbeiten
4.4 Objekte löschen
Kapitel 5 - CadnaR-Objekte

5.1 Gemeinsame Eingabedaten

Es kann eine beliebige Zeichenfolge als Objektbezeichnung eingegeben werden.

Für die Objekte „Pegelrahmen“, „Textrahmen“ und „Ausschnitt“ steht das Attribut „Bezeichnung“ nicht zur Verfügung.

Mit dem Aktivierungszustand, dem ID und der Gruppedefinition stehen mächtige Werkzeuge zur Projektsteuerung und Bearbeitung unterschiedlicher Projektvarianten in einer Projektdatei zur Verfügung (siehe Kapitel 8.2).

Regeln für ID

Der ID sollte nur aus Buchstaben (ohne Umlaute), Ziffern oder dem Unterstrich ("_") bestehen. Als erstes Zeichen sollte zudem ein Buchstabe verwendet werden.

Aktivierungszustände

Das Kontrollkästchen vor dem ID erlaubt es, dem Objekt drei Aktivierungszustände durch Anklicken zuzuweisen:

<table>
<thead>
<tr>
<th>Kontrollkästchen mit grauem Häkchen (d.h. neutral), ID schwarz:</th>
<th>Kontrollkästchen mit grauem Häkchen (d.h. neutral), ID schwarz: Dies ist der standardmäßig eingestellte Aktivierungszustand. Das Objekt wird als aktiv berücksichtigt, solange es nicht über eine Gruppedefinition deaktiviert wurde. Der Aktivierungszustand kann nur für Objekte, die sich in diesem neutralen Zustand befinden, über Gruppenbildung verändert werden. Objekte mit dieser Einstellung werden in die Berechnung einbezogen (d.h. Quellen strahlen ab und Hindernisse erzeugen eine abschirmende Wirkung).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollkästchen mit grauem Häkchen, ID rot:</td>
<td>Kontrollkästchen mit grauem Häkchen, ID rot: Das Objekt ist durch eine Gruppedefinition auf deaktiv geschaltet. Objekte mit dieser Einstellung werden nicht in die Berechnung einbezogen (d.h. Quellen strahlen nicht ab und Hindernisse erzeugen keine abschirmende Wirkung).</td>
</tr>
</tbody>
</table>
Der Schalter „ObjectTree“ befindet sich in jedem Objektdialog. Durch Anklicken des Symbols wird der Dialog **Select** für den ObjectTree geöffnet. Falls ein ObjectTree definiert ist (siehe Kapitel 8.1.2) kann im Dialog durch Mausklick die Objektgruppe gewählt werden, der das aktuelle Objekt zugeordnet sein soll.

Mehrere Objekte, auch verschiedener Objektarten, können programmgesteuert dem ObjectTree zugewiesen werden. Verwenden Sie dazu den Befehl **Objekte verändern** im **CadnaR**-Hauptfenster, Aktion „Attribut verändern“ für das Attribut ID (siehe Kapitel 6.2.2).

Eine Textvariable besteht aus einem Namen, einem nachfolgenden Gleichheitszeichen und dem Wert der Textvariablen. Die Eingabe erfolgt ohne zwischengestellte Leerzeichen.
Beispiel: Leistung=1000

Auf den Wert der Textvariable kann z.B. bei der Erzeugung eines Etiketts zugegriffen werden (siehe Kapitel 6.2.13).

Die in der Konfiguration, Registerkarte "RIA-Auswertung" (siehe Kapitel 9.1.3.1), ausgewählten Gütemaße werden nach einer Berechnung als Textvariablen in das Info-Fenster der aktiven Immissionspunkte (siehe Kapitel 5.9) geschrieben (varianten-abhängige Kennung: .._V01 für 1.Variante, .._V02 für 2.Variante etc.)

Beachten Sie, dass bei einer erneuten Berechnung die vorhandenen Textvariablen gelöscht und durch die aktuell berechneten überschrieben werden. Falls dies nicht gewünscht ist, benennen Sie die vorhandenen Variablen um oder kopieren Sie den Inhalt des Info-Fensters oder die gewünschte/n Textvariable/n - zum Beispiel - in einen Textrahmen (siehe auch Aktion "Attribut verändern", siehe Kapitel 6.2.2).

In das Info-Fenster eines Objektdialogs können Verknüpfungen zu Dateien, die Bilder, Text, Musik, Video o.ä. enthalten oder auch Internet-Links eingegeben werden, die dann anschließend aus dem Kontextmenü des Objektes geöffnet werden können. Dazu wird die Memo-Variable HYPERLINK=File eingefügt. „File“ steht für den Pfad einer Datei ggf. einschließlich Laufwerksbezeichnung, z.B.:

HYPERLINK=T:\Berichte\2198\diagramm.xls.

Wenn eine CadnaR-Datei zusammen mit den verknüpften Dateien weitergegeben werden soll, benutzen Sie am besten nur relative Pfadangaben. Löschen Sie ggf. die Laufwerkskennung und die Ordnerstruktur aus dem Hyperlink (nur der Dateiname verbleibt). CadnaR findet diese Dateien bei Weitergabe, wenn sich diese in demselben Verzeichnis wie die CadnaR-Datei befinden.

Nach Klick auf den Dateinamen wird das entsprechende Software-Programm gestartet und die Datei geöffnet. Alternativ kann für eine Datei ein Alias-Name vergeben werden (hinter senkrechtem Strich hinter dem Dateinamen). Im Kontextmenü wird dann der Alias-Name angezeigt, z.B.:

HYPERLINK=diagramm.xls|Spektrum

Es können mehrere Hyperlinks im Dialog Info-Fenster vorhanden sein. In diesem Fall ist es sinnvoll, jeden Hyperlink individuell umzubenennen. Dann ist auch ein globaler Zugriff über den Dialog Objekte verändern, Aktion „Attribut verändern“ möglich (Attribut: MEMOTXTVAR, Textvariable: HYPERLINK1..n, mit 1..n nachträglich vergebene Nummerierung).

 - Auswahl aus der lokalen Bibliothek: durch Klick auf das Dateiauswahlsymbol
 - Auswahl aus der globalen Bibliothek: durch Klick auf das Dateiauswahlsymbol bei gedrückter SHIFT-Taste

Spektrum aus Bibliothek referenziert, Anzeige hier als A-bewertetes Oktavspektrum
• **Formelausdruck**: Das Feld kann auch einen Formelausdruck unter Verwendung von Operatoren (siehe Kapitel 9.1.5.7, Abschnitt "Formeln und Operatoren") enthalten. Beispiele:

 - Addition von 3 dB zum Spektrum SP1: SP1+3
 - energetische Addition der Spektren SP1 und SP2: SP1++SP2

Energetische Addition der Spektren SP1 und SP2, Feld „LwA“ zeigt A-bewerteten Summenpegel an

• **Option "Spektrum auf LwA normieren"**: Diese Option ist standardmäßig deaktiviert.

LwA-Eingabe erzeugt lineares Spektrum

Normierung eines referenzierten Spektrums auf einen eingegebenen Summenpegel LwA
• **Balkendiagramm/Oktavwerte/bewerteter/unbewerteter Summenpegel**: Bei Klick auf das Balkendiagramm wird das Spektrum linear, A-, B-, C- oder D-bewertet angezeigt. Der angezeigte Frequenzbereich richtet sich nach der Einstellung in der Konfiguration (siehe Kapitel 9.1.3.1, Registerkarte „Allgemein“). Zudem werden darunter die in der Berechnung verwendeten Spektralwerte, sowie der bewertete und unbewertete Summenpegel angezeigt.

![Balkendiagramm/Oktavspektrum](image)

Anzeige als lineares oder A/B/C/D-bewertetes Oktavspektrum
(hier: D-bewertet)
Klicken Sie auf eine dieser Schaltflächen, um ein Absorptionsgrad-, Streu-
grad- bzw. Transmissionsgrad/Schalldämmmaß-Spektrum aus den lokalen oder globalen Bibliotheken auszuwählen und zuzuweisen:

- Auswahl aus der lokalen Bibliothek: durch Klick auf das Dateiaus-
 wahlsymbol
- Auswahl aus der globalen Bibliothek: durch Klick auf das Dateiaus-
 wahlsymbol bei gedrückter SHIFT-Taste

Alternativ kann auch ein Zahlenwert eingegeben werden. In diesem Fall wird der Wert für alle Oktaven verwendet.

Der Streugrad und der Transmissionsgrad (bzw. das Schalldämm-
maß) werden nur innerhalb von Berechnungen nach dem Teilchen-
modell verwendet. Zudem sind diese relevant für den Energieanteil des Teilchenmodells bei Berechnungen nach dem Hybridmodell („Spiegelquellen --> Teilchen“).

Nach Auswahl eines Spektrums bzw. Eingabe eines Zahlenwerts zeigt das Schaltflächen-Diagramm den Verlauf des Absorptionsgrads, des Streu-
grads bzw. des Transmissionsgrads/Schalldämm-Maßes an.
Beachten Sie dabei folgende Funktionen der Diagrammdarstellung:

- Auf der Schaltfläche "Transmission" wird entweder das Transmissionsgrad-Spektrum in % oder das Schalldämmmaß-Spektrum in dB angezeigt, abhängig davon welchen Dämmungstyp das ausgewählte Spektrum aufweist.

- Falls das Teilchenmodell als Berechnungsverfahren gewählt ist und die Option "Teilchen je Oktave erzeugen" (siehe Kapitel 9.1.3.1, Abschnitt "Registerkarte „Teilchenmodell“") nicht aktiviert ist (Standardinstellung), wird der Streugrad bzw. der Transmissionsgrad aus allen Oktavwerten gemittelt und als Einzahlwert auf der Schaltfläche angezeigt. Schalldämmmaß-Spektren werden in zuerst in Transmissionsgrad-Spektren umgewandelt, gemittelt, in Dämmmaße zurückgewandelt und dann als Einzahlwert auf der Schaltfläche angezeigt.

- Falls nicht das Teilchenmodell als Berechnungsverfahren gewählt ist, werden die Schaltflächen für Streuung und Transmission grau dargestellt. In diesem Fall ist die Auswahl zwar möglich, die Streu- und Transmissionsgrade werden aber in Berechnung nicht verwendet.

Verfahren „Spiegelquellen“ gewählt:
Schaltflächen „Streuung/Transmission“ grau, da nicht relevant.
Darstellungsbeispiele

<table>
<thead>
<tr>
<th>T02</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transmissionsgrad-Spektrum ausgewählt mit deaktivierter Option „Teilchen je Oktave erzeugen“ (auf Registerkarte „Teilchenmodell“, siehe Kapitel 9.1.3.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T02</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transmissionsgrad-Spektrum ausgewählt mit aktivierter Option „Teilchen je Oktave erzeugen“ (auf Registerkarte „Teilchenmodell“, siehe Kapitel 9.1.3.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R1</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schalldämm-Maß-Spektrum ausgewählt mit deaktivierter Option „Teilchen je Oktave erzeugen“ (auf Registerkarte „Teilchenmodell“, siehe Kapitel 9.1.3.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R1</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schalldämm-Maß-Spektrum ausgewählt mit aktivierter Option „Teilchen je Oktave erzeugen“ (auf Registerkarte „Teilchenmodell“, siehe Kapitel 9.1.3.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Eingabe eines Zahlenwerts wird als Transmissionsgrad in % interpretiert.</td>
</tr>
</tbody>
</table>

Standardwerte

Falls keine Auswahl für „Absorption/Streuung/Transmission“ vorgenommen wurde, werden die folgenden Standardwerte verwendet:

- Absorptionsgrad = 0,
- Streugrad = 0,
- Transmissionsgrad = 0.
Kapitel 5 - CadnaR-Objekte
5.1 Gemeinsame Eingabedaten
5.2 Punktquelle

Punktquellen sind Schallquellen ohne räumliche Ausdehnung. Punktquellen strahlen allseitig gleichmäßig ab, solange keine spezielle Richtwirkung zugewiesen wurde.

Dialog Punktquelle

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Koordinaten x|y|z**: bezogen auf den Koordinatenursprung

- **Schallleistungspegel LwA (dB)**: Falls kein Emissionsspektrum vorliegt, wird hier der A-bewertete (Summen-) Schallleistungspegel LwA der Schallquelle eingegeben. Aktivieren Sie dazu zuerst die Option „Spektrum auf LwA normieren“ im Dialogteil „Emissionsspektrum“.

 Bei aktivierter Option „Spektrum auf LwA normieren“ wird aus dem eingegebenen Summenpegel unter Einbeziehung der A-Bewertung ein konstantes lineares Oktavpegelspektrum für den eingestellten Frequenzbereich gebildet, im Beispiel oben von 125 bis 4000 Hz (siehe Kapitel 9.1.3.1, Registerkarte „Allgemein“).

• Dialogteil „Emissionspektrum“: siehe Kapitel 5.1, Abschnitt "Dialogteil „Emissionspektrum“ für Quellen"

• Schaltfläche "Richtwirkung": öffnet den Dialog „Richtwirkung“

Dialog Richtwirkung

Richtwirkung auswählen

Sind Richtwirkungen in der Tabelle Richtwirkung vorhanden, können diese aus dem Listenfeld gewählt werden.

Schaltfläche "Tabelle"

Diese stellt einen unmittelbaren Zugriff auf die Tabelle Richtwirkung her, in der neue Richtwirkungen angelegt und editiert werden (siehe Kapitel 9.1.7.6).

Orientierung

Die ausgewählte Richtwirkung kann im Raum über zwei Richtungsvektoren oder über die Angabe von drei Winkeln orientiert werden.

• Richtungsvektoren: Geben Sie die xyz-Richtungskoordinaten für Vektor 1 (in +z-Richtung) und Vektor 2 (in +x-Richtung) ein, ausgehend vom Ursprung (x,y,z) = (0,0,0) ein. Dabei müssen die beiden Richtungsvektoren 1 und 2 eine Ebene aufspannen (d.h. sie dürfen nicht kollinear sein).
• **Rotationswinkel**: Geben Sie alternativ die Winkel ein, die der Richtwirkungsvektor mit den Koordinatenachsen einschließt:

- \(\phi_f \): Drehwinkel des Richtwirkungsvektors 2 (in Abbildung: \(x' \)) um die +z-Achse (in der xy-Ebene)
- \(\theta_J \): Drehwinkel, den der Richtwirkungsvektor 1 (in Abbildung: \(z' \)) mit der +z-Achse einschließt
- \(\psi_y \): Drehwinkel um die positive Achse des Richtwirkungsvektors 1 (in Abbildung: \(z' \))

Über diese Schaltfläche wird die ausgewählte Richtwirkung und deren räumliche Orientierung in einem drei-dimensionalen Richtwirkungsdiagramm dargestellt. Die **Richtwirkung 3D-Ansicht** kann mit der Maus um den Mittelpunkt rotiert und gezoomt werden:

- Rotieren: linke Maustaste gedrückt halten und Maus nach oben/unten oder links/rechts bewegen
- Zoomen: rechte Maustaste gedrückt halten und Maus vor/zurück bewegen

Zudem stehen folgende Editierhilfen zur grafischen Ausrichtung des Richtwirkungsdiagramms zur Verfügung:
<table>
<thead>
<tr>
<th>Tastatur und/oder Maus</th>
<th>Orientierungsänderung der Richtwirkung in ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFT + linke Maustaste + Mausbewegung links/rechts</td>
<td>phi</td>
</tr>
<tr>
<td>SHIFT + linke Maustaste + Mausbewegung auf/ab</td>
<td>theta</td>
</tr>
<tr>
<td>SHIFT + rechte Maustaste + Mausbewegung links/rechts</td>
<td>psi</td>
</tr>
<tr>
<td>B</td>
<td>Hintergrundfarbe ändern</td>
</tr>
<tr>
<td>F</td>
<td>automatische Rotation um die z-Achse an/aus</td>
</tr>
<tr>
<td>F 11</td>
<td>Antialiasing an/aus</td>
</tr>
</tbody>
</table>
5.3 Linienquelle

Dialog Linienquelle

- **Bezeichnung**, **ID**, **ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **3D-Länge**: Die Gesamtlänge (in m) des Linienobjekts - im Gegensatz zur sichtbaren 2D-Länge im CadnaR-Hauptfenster.

• **Schallleistungspegel LwA / LwA' (dB):** Falls kein Emissionsspektrum vorliegt, wird hier der A-bewertete (Summen-) Schallleistungspegel LwA bzw. LwA' der Schallquelle eingegeben. Aktivieren Sie dazu zuerst die Option „Spektrum auf LwA normieren“ im Dialogteil „Emissionsspektrum“.

Bei aktivierter Option „Spektrum auf LwA normieren“ wird aus dem eingegebenen Summenpegel unter Einbeziehung der A-Bewertung ein konstantes lineares Oktavpegelspektrum für den eingestellten Frequenzbereich, hier von 125 bis 4000 Hz (siehe Kapitel 9.1.3.1, Registerkarte „Allgemein“), gebildet.

• **Arbeitsplatz-bezogener Emissions-Schalldruckpegel LpA (dB):** Hier ist der A-bewertete, arbeitsplatz-bezogene Emissions-Schalldruckpegel LpA bei alleinigem Betrieb dieser Schallquelle einzugeben.

• **Dialogteil „Emissionsspektrum“:** siehe Kapitel 5.1, Abschnitt "Dialogteil „Emissionsspektrum“ für Quellen"
5.3 Linienquelle

- **Schaltfläche "Geometrie"**: In diesem Dialog werden die Koordinaten x,y,z der Polygon-Stützpunkte angezeigt. Über das Kontextmenü der Tabelle können Zeilen hinzugefügt, gelöscht, verändert oder sortiert werden.

 Dialog Polygon:Geometrie

- **Listenfeld "Höhe"**:
 - *Höhe aus Anfangs/Endpunkt interpolieren*: Falls nur die Anfangshöhe eingegeben wurde, erhalten alle Polygonpunkte diese Höhe. Falls die Option "Endpunkt" aktiviert und eine von der Anfangshöhe abweichende Endhöhe eingegeben wurde, wird die Höhe aller Zwischenpunkte aus den Höhen am Anfangs-/Endpunkt linear interpoliert.
 - *Höhe an jedem Punkt eingeben*: Ist diese Option aktiviert, so kann die Höhe an jedem Punkt innerhalb der Tabelle editiert werden.

- **Tabelle Polygonpunkte**: enthält die Koordinaten x,y,z der Polygonpunkte. Bei Doppelklick in eine Zeile öffnet sich der Dialog *Polygonpunkt*.

- **3D-Länge**: Die Gesamtlänge (in m) des Linienobjekts - im Gegensatz zur sichtbaren 2D-Länge im CadnaR-Hauptfenster.
Dialog Polygonpunkt

- **Koordinaten**: x,y,z Koordinaten des Polygon-Stützpunkts
- **Abstand vom Anfang**: 3D-Abstand vom Anfangspunkt (m)
- **Schaltfläche "Neu"**: fügt einen neuen Polygonpunkt ein
- **Pfeiltasten <|-->:** schalten zum vorigen/nächsten Polygonpunkt weiter
5.4 Flächenquelle

Dialog Flächenquelle

- **Bezeichnung** (ID), **ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Fläche**: Flächeninhalt (in m²)

- **Result. LwA / Result. LwA" (dB)**: Anzeige des resultierenden A-bewerteten Schallleistungspegels und des resultierenden flächen-bezogenen A-bewerteten Schallleistungspegels
• **Schalleistungspegel LwA / LwA'' (dB):** Falls kein Emissionsspektrum vorliegt, wird hier der A-bewertete (Summen-) Schalleistungspegel LwA bzw. LwA“ der Schallquelle eingegeben. Aktivieren Sie dazu zuerst die Option „Spektrum auf LwA normieren“ im Dialogteil „Emissionsspektrum“.

Bei aktivierter Option „Spektrum auf LwA normieren“ wird aus dem eingegebenen Summenpegel unter Einbeziehung der A-Bewertung ein konstantes lineares Oktavpegelspektrum für den eingestellten Frequenzbereich, hier von 125 bis 4000 Hz (siehe Kapitel 9.1.3.1, Registerkarte „Allgemein“), gebildet.

• **Arbeitsplatz-bezogener Emissions-Schalldruckpegel LpA (dB):** Hier ist der A-bewertete, arbeitsplatz-bezogene Emissions-Schalldruckpegel LpA bei alleinigem Betrieb dieser Schallquelle einzugeben.

• **Dialogteil „Emissionsspektrum“:** siehe Kapitel 5.1, Abschnitt "Dialogteil „Emissionsspektrum“ für Quellen"
• **Schaltfläche "Geometrie"**: In diesem Dialog werden die Koordinaten x,y,z der Polygon-Stützpunkte angezeigt. Über das Kontextmenü der Tabelle können Zeilen hinzugefügt, gelöscht, verändert oder sortiert werden.

![Dialog Polygon:Geometrie](image)

Dialog **Polygon:Geometrie**

• **Listenfeld "Höhe"**:
 - *Höhe aus Anfangs/Endpkt interpolieren*: Falls nur die Anfangshöhe eingegeben wurde, erhalten alle Polygonpunkte diese Höhe. Falls die Option "Endpunkt" aktiviert und eine von der Anfangshöhe abweichende Endhöhe eingegeben wurde, wird die Höhe aller Zwischenpunkte aus den Höhen am Anfangs-/Endpunkt linear interpoliert.
 - *Höhe an jedem Punkt eingeben*: Ist diese Option aktiviert, so kann die Höhe an jedem Punkt innerhalb der Tabelle editiert werden.

• **Tabelle Polygonpunkte**: enthält die Koordinaten x,y,z der Polygonpunkte. Bei Doppelklick in eine Zeile öffnet sich der Dialog **Polygonpunkt**.

• **3D-Länge**: Die Gesamtlänge (in m) des Linienobjekts - im Gegensatz zur sichtbaren 2D-Länge im **CadnaR**-Hauptfenster.

• **3D-Fläche**: Die Gesamtfläche (in m²) des Flächenobjekts - im Gegensatz zur sichtbaren 2D-Fläche im **CadnaR**-Hauptfenster.

siehe Kapitel 5.3

Dialog **Polygonpunkt**
Kapitel 5 - CadnaR-Objekte
5.4 Flächenquelle
5.5 Vertikale Flächenquelle

Dialog Vertikale Flächenquelle

- **Bezeichnung, ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Geometriedaten:**
 - P1 (x,y,z): Koordinaten der ersten Punktes der vertikalen Flächenquelle
 - P2 (x,y,z): Koordinaten der zweiten Punktes der vertikalen Flächenquelle
• **Fläche**: Flächeninhalt (in m²)

• **Result. LwA / Result. LwA" (dB)**: Anzeige des resultierenden A-bewerteten Schallleistungspegels und des resultierenden flächen-bezogenen A-bewerteten Schallleistungspegels

• **Schallleistungspegel LwA / LwA" (dB)**: Schallleistungspegel LwA / LwA" (dB): Falls kein Emissionsspektrum vorliegt, wird hier der A-bewertete (Summen-) Schallleistungspegel LwA bzw. LwA" der Schallquelle eingegeben. Aktivieren Sie dazu zuerst die Option „Spektrum auf LwA normieren“ im Dialogteil „Emissionsspektrum“.

즞 Bei aktiverter Option „Spektrum auf LwA normieren“ wird aus dem eingegebenen Summenpegel unter Einbeziehung der A-Bewertung ein konstantes lineares Oktavpegelspektrum für den eingestellten Frequenzbereich, hier von 125 bis 4000 Hz (siehe Kapitel 9.1.3.1, Registerkarte „Allgemein“), gebildet.

• **Arbeitsplatz-bezogener Emissions-Schalldruckpegel LpA (dB)**: Hier ist der A-bewertete, arbeitsplatz-bezogene Emissions-Schalldruckpegel LpA bei alleinigem Betrieb dieser Schallquelle einzugeben.

• **Dialogteil „Emissionsspektrum“**: siehe Kapitel 5.1, Abschnitt "Dialogteil „Emissionsspektrum“ für Quellen"
5.6 Quaderquelle

Die Quaderquelle in CadnaR ist ein achsenparalleler Kubus, der allseitig mit Flächenquellen belegt ist. Sie strahlt Schall ab und wirkt gleichzeitig abschirmend. Sie ist daher besonders zur Modellierung von Maschinen geeignet, die sowohl Quelle, als auch Hindernis darstellen.

Die Abstrahlung einzelner Flächen kann unterdrückt oder auch die Hinderniswirkung pauschal deaktiviert werden. Die Oberfläche der Quaderquelle schallabsorbierende, streuende und transmittierende Eigenschaften aufweisen.

Dialog Quaderquelle

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Geometriedaten**:
 - min (x,y,z): Koordinaten der linken unteren Ecke der Quaderquelle
 - max (x,y,z): Koordinaten der rechten oberen Ecke der Quaderquelle
• **nicht emittierende Seiten der Quaderquelle:** Falls die Quelle eine endliche Ausdehnung hat (z.B. Höhe<>0) kann mit dieser Option die Abstrahlung von bis zu sechs Seitenflächen unterdrückt werden.

- **N-S-O-W:** Die Richtungsangabe bezieht sich auf die Koordinatenrichtung bei angenommener Nordrichtung nach oben in der Bildschirmdarstellung.
- **Oben/Unten:** obere und untere Begrenzungsfläche der Quelle

• **Fläche:** Flächeninhalt (in m²)

• **Result. LwA / Result. LwA" (dB):** Anzeige des resultierenden A-bewerteten Schallleistungspegels und des resultierenden flächen-bezogenen A-bewerteten Schallleistungspegels

• **Option "nicht abschirmend":** Falls diese Option gesetzt ist, wird die gesamte Quaderquelle nicht in die Abschirmrechnung einbezogen. Es verbleiben nur die als emittierend definierten Teilquellen (max. 6).

• **Schallleistungspegel LwA / LwA" (dB):** Falls kein Emissionsspektrum vorliegt, wird hier der A-bewertete (Summen-) Schallleistungspegel LwA bzw. LwA“ der Schallquelle eingegeben. Aktivieren Sie dazu zuerst die Option „Spektrum auf LwA normieren“ im Dialogteil „Emissionsspektrum“.

 Bei aktivierter Option „Spektrum auf LwA normieren“ wird aus dem eingegebenen Summenpegel unter Einbeziehung der A-Bewertung ein konstantes lineares Oktavpegelspektrum für den eingestellten Frequenzbereich, hier von 125 bis 4000 Hz (siehe Kapitel 9.1.3.1, Registerkarte „Allgemein“), gebildet.

• **Arbeitsplatz-bezogener Emissions-Schalldruckpegel LpA (dB):** Hier ist der A-bewertete, arbeitsplatz-bezogene Emissions-Schalldruckpegel LpA bei alleinigem Betrieb dieser Schallquelle einzugeben.

• **Dialogteil „Emissionsspektrum“:** siehe Kapitel 5.1, Abschnitt "Dialogteil „Emissionsspektrum“ für Quellen"

• **Schaltflächen "Absorption / Streuung / Transmission“:** siehe Kapitel 5.1, Abschnitt "Schaltflächen „Absorption/Streuung/Transmission“ für Hindernisse"
5.7 Hindernisquader

Der Hindernisquader in CadnaR ist ein achsenparalleler Kubus, der abschirmend wirkt. Er wird dazu verwendet, um Hindernisse zu modellieren, die in Richtung der Flächennormalen nicht dünn im Verhältnis zur Wellenlänge sind. Die Oberfläche kann - wie bei der Quaderquelle - schallabsorbierende, streuende und transmittierende Eigenschaften aufweisen.

Dialog Quaderquelle

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabetabellen"

- **Geometriedaten:**
 - min (x,y,z): Koordinaten der linken unteren Ecke des Hindernisquaders
 - max (x,y,z): Koordinaten der rechten oberen Ecke des Hindernisquaders

- **Option "nicht abschirmend":** Ist diese Option aktiviert, erzeugt dieses Objekt keine abschirmende Wirkung.
• Schaltflächen "Absorption / Streuung / Transmission": siehe Kapitel 5.1, Abschnitt "Schaltflächen „Absorption/Streuung/Transmission“ für Hindernisse"
5.8 Schirm

Der Schirm steht senkrecht auf dem Boden und besteht immer aus zwei Polygonpunkten. Er kann auch als schwebender Schirm eingegeben werden (z(P1)>0). Die Oberfläche des Schirms kann schallabsorbierende, streuende und transmittierende Eigenschaften aufweisen.

Dialog Schirm

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Geometriedaten**:
 - P1 (x,y,z): Ortskoordinaten des ersten Punkts des Schirms
 - P2 (x,y,z): Ortskoordinaten des zweiten Punkts des Schirms

- **Fläche**: Flächeninhalt (in m²)

- **Schaltflächen "Absorption / Streuung / Transmission"**: siehe Kapitel 5.1, Abschnitt "Schaltflächen „Absorption/Streuung/Transmission“ für Hindernisse"
Die Bezeichnungen "L/R" beziehen sich auf die linke bzw. rechte Seite des Schirms, gesehen vom Anfangs- zum Endpunkt des Schirm-Polygons.
5.9 Immissionspunkt

Mit diesem Objekt werden einzelne Immissionspunkte platziert. Die Berechnung der Schallimmissionspegel an Immissionspunkten wird gestartet:

- nach Auswahl des Befehls **Immissionspunkte berechnen** im Menü **Berechnung** oder

- nach Klick auf das Symbol auf der Symbolleiste.

Im Unterschied zum Immissionsraster können für Immissionspunkte die Teilpegel aller Schallquellen angezeigt werden (siehe Schaltfläche "Teilpegel").

- **Bezeichnung**, **ID**, **ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

In das Info-Fenster der aktiven Immissionspunkte werden die der Konfiguration, Registerkarte "RIA-Auswertung" (siehe Kapitel 9.1.3.1), ausgewählten raumakustischen Gütemaße als Textvariablen geschrieben.
Koordinaten x|y|z: Die xy-Koordinaten beziehen sich auf den Koordinatenursprung des Umgriffs. Die z-Koordinate entspricht der Höhe des Immissionspunktes über der Raumgrundfläche.

Ist die Option "Immissionspunkt ist Arbeitsplatz bei Schallquelle" aktiviert, so ist der Immissionspunkt als Arbeitsplatz definiert. In diesem Fall ist dem Immissionspunkt eine Einzelquelle (z.B. Punktquelle) oder eine Quellgruppe zuzuordnen.

Im Zuge der Berechnung wird für diesen Arbeitsplatz der arbeitsplatzbezogene Emissions-Schalldruckpegel LpA der ausgewählten Einzelquelle als kennzeichnende Emissionsgröße verwendet, der im Hinblick auf die Raumrückwirkung korrigiert wird.

Quellgruppe: Bei einer Quellgruppe erfolgt die Zuordnung automatisch durch Auswertung des ObjectTree (siehe Kapitel 8.1.2). Dazu müssen sich die dem Immissionspunkt zugeordneten Quellen und Hindernisse in derselben Gruppe wie der Immissionspunkt selbst befinden. Im Eingabefeld „LpA“ am Ende der Zeile „Quellgruppe“ ist der arbeitsplatzbezogene Emissions-Schalldruckpegel LpA für diese Quellgruppe anzugeben.

Bei einer zugewiesenen Quellgruppe wird im Rahmen ein Vorberechnung der an diesem Immissionspunkt unter Halbfreifeldbedingungen eintreffende Schalldruckpegel (Direktschall plus Bodenreflexion) unter Einbeziehung aller Quellen und Hindernisse innerhalb der Gruppe ermittelt. Alle Quellen und Hindernisse außerhalb dieser Gruppe sind bei dieser Vorberechnung deaktiviert.

Nach Abschluss der Vorberechnung wird das an diesem Arbeitsplatz berechnete Spektrum so umnormiert, dass der eingegebene Emissions-Schalldruckpegel LpA resultiert.
• **Quellgruppen-LpA aus SET-T-Modul:** Der Arbeitsplatz-bezogene Emissions-Schalldruckpegel LpA einer Quellgruppe kann auch über ein SET-T-Modul festgelegt werden (Voraussetzung: Option SET verfügbar). In diesem Fall wird durch Setzen der Textvariablen „GroupLpaSet“ mit dem ID des zu verwendenden SET-T-Moduls der zu verwendende Quellgruppen-LpA festgelegt.

Die Berechnung verwendet den Wert der 1000 Hz Oktave des referenzierten SET-T-Moduls als Einzahlwert.
Diese zusätzliche Informationen beziehen sich auf die Option "Immissionspunkt ist Arbeitsplatz bei Schallquelle".

Im Hinblick auf die Verwendung des eingegebenen arbeitsplatz-bezogenen Emissions-Schalldruckpegels L_{pA} sind in Bezug auf dessen Verwendung in der anschließenden Berechnung folgende, vom eingestellten Berechnungsverfahren abhängige Punkte zu beachten:

- Wird der arbeitsplatz-bezogene Emissions-Schalldruckpegel L_{pA} für eine Einzelquelle angegeben, so wird dieser nur dann in der Berechnung verwendet, wenn entweder das Hybridverfahren (,,Spiegelquellen --> Teilchen“) oder das Strahlmodell gewählt ist (siehe Kapitel 9.1.3.1). In beiden Fällen wird als Wert für den Direktschall (Strahl 0. Ordnung) der eingegebene Emissions-Schalldruckpegel L_{pA} verwendet und die Raumrückwirkung mit Hilfe des eingestellten Verfahrens berechnet und energetisch addiert.

- Der eingegebene arbeitsplatz-bezogene Emissions-Schalldruckpegel L_{pA} für eine Einzelquelle wird hingegen nicht für den Direktschall-Anteil verwendet, wenn das reine Teilchenmodell gewählt ist (siehe Kapitel 9.1.3.1). In diesem Fall resultiert der Anteil des Direktschalls an diesem Immissionspunkt - ebenso wie für die höheren Ordnungen - aus dem Berechnungsergebnis für das Teilchenmodell.

- Wird hingegen der arbeitsplatz-bezogene Emissions-Schalldruckpegel L_{pA} für eine Quellgruppe angegeben, so resultiert der Direktschall-Anteil immer - unabhängig vom gewählten Berechnungsverfahren (,,Teilchen“, „Spiegelquellen --> Teilchen“ oder „Spiegelquellen“) - aus der o.g. Vorausberechnung unter Anwendung des Teilchenmodells (unter Halbfreifeldbedingungen, siehe oben). In diesem Fall wird die Raumrückwirkung mit Hilfe des gewählten Berechnungsverfahrens berechnet und energetisch addiert.

Die Anwendung der Option „Quellgruppe“ (in Verbindung mit dem ObjectTree) erfordert die Option ORG, so dass mit Programmversionen ohne diese Option keine Berechnung des Emissions-Schalldruckpegels L_{pA} für Quellgruppen möglich ist.
In diesem Beispiel wurde eine Quellgruppe aus mehreren Hindernissen (Hindernisquader und Schirme) und mehreren Quellen (Punkt- und Flächenquelle) modelliert. Der zugehörige Arbeitsplatz befindet sich in der gleichen Gruppe wie alle Objekte des Quellmodells.

Maschinenmodell bestehend aus Hindernisquader und Schirmen sowie je einer Punkt- und Flächenquelle

Struktur des ObjectTree: Der Immissionspunkt, der den Arbeitsplatz repräsentiert, befindet sich innerhalb der Gruppe, die das Maschinenmodell enthält. Es können sich auch mehrere Immissionspunkte innerhalb der Quellgruppe befinden.

Sobald im Dialog Immissionspunkt die Option „Quellgruppe“ aktiviert wird, erscheint die Gruppenbezeichnung (hier: „Maschine“) und der zugehörige Arbeitsplatzpegel LpA kann eingetragen werden.

Nach Abschluss der Berechnung wird der resultierende Pegel und das Pegelspektrum angezeigt.
• **Option "Richtwert":** Nach Aktivierung dieser Option kann ein Richtwertpegel in dB(A) eingegeben werden. Liegt eine Pegelüberschreibung an diesem Immissionsort vor, so wird das Immissionspunktsymbol in der Planansicht und in der 3D-Ansicht in Rot angezeigt.

• **Pegel (dBA) / Pegelspektrum dB (lin):** In diesem Dialogbereich werden der A-bewertete (Summen-) Schalldruckpegel und das lineare Oktavpegelspektrum an diesem Immissionsort angezeigt.

• **Balkendiagramm:** zeigt grafisch den Verlauf des linearen Oktavpegelspektrum an.

• **Option "Generiere Strahlen (als Hilfspolygone)":** Wenn diese Option vor der Pegelberechnung an Immissionspunkten aktiviert ist, werden die Schallstrahlen bis zur eingestellten Reflexionsordnung in der 2D-Grafik angezeigt. Zusätzlich können die Strahlen auch in der 3D-Raumdarstellung angezeigt werden (Taste S).

Nach der Berechnung wird im ID-Feld des jeweiligen Strahls der Teilpegel und die Reflexionsordnung angezeigt. Zudem ist ersichtlich, ob ein Strahl abgeschirmt wurde (angehängter Buchstabe S) und ob der Immissionspunkt einen Arbeitsplatz darstellt (angehängter Buchstabe W).

Beispiele:
- RAY_672_00: Strahl mit Teilpegel 67.2 dB(A), 0.Ordnung=Direktstrahl (00), nicht abgeschirmt
- RAY_568_01S: Strahl mit Teilpegel 56.8 dB(A), 1.Ordnung (01), abgeschirmt
- RAY_434_02_W: Strahl mit Teilpegel 43.4 dB(A), 2.Ordnung (02), IP ist Arbeitsplatz
Nach Klick auf diese Schaltfläche wird die Tabelle **Teilpegel** angezeigt.

Die Tabelle enthält die folgenden Spalten:

- Name und ID der Quelle
- Quelltyp: PQ (Punktquelle), LQ (Linienquelle), FQ (Flächenquelle), FV (vertikale Flächenquelle), QQ (Quaderquelle)
- A-bewerteter Summenpegel in dB(A)
- linearer (unbewerteter) Oktavbandpegel in dB

Für deaktivierte Quellen wird kein Teilpegel angezeigt.

Im Gegensatz dazu enthält die Tabelle **Teilpegel** im Menü **Tabellen** die Teilpegel aller Quellen an allen Immissionspunkten (siehe Kapitel 9.1.7.4).
Diese Schaltfläche steht nur zur Verfügung, wenn als Berechnungsverfahren "Spiegelquellen --> Teilchen", "Spiegelquellen" oder "Teilchen" gewählt wurde und die Option "Berechne Echogramme und Abklingkurven" auf der Registerkarte "RIA-Auswertung" aktiviert wurde (siehe Kapitel 9.1.3.1). Nach Klick auf die Schaltfläche wird der Dialog **Echogramm** geöffnet.

siehe auch: Strahlen löschen (siehe Kapitel 10.1.7.5)

Im Dialog **Echogramm** wird die aus dem Zeitverlauf der am jeweiligen Immissionspunkt eintreffenden Schallsignale durch Rückwärtsintegration geglättete Echogramme und Abklingkurven angezeigt. Die dabei verwendete Klassenbreite und die Klassenanzahl der Zeitachse hängt von den Einstellungen in der Konfiguration, Registerkarte "RIA-Auswertung" (siehe Kapitel 9.1.3.1), ab.

Abklingkurven mit Regressionsgeraden zur Auswertung von T30 im Frequenzbereich 125 bis 4000 Hz (x-Achse: in s, y-Achse in dB).
• **Schließen:** Der Dialog wird geschlossen.

• **Kopieren:** Bei Klick auf diese Schaltfläche wird das Diagramm als Metafile in die WINDOWS-Zwischenablage kopiert werden. Von dort kann es z.B. in ein Textverarbeitungs-Programm eingefügt werden.

• **Darstellungsoptionen:**
 - Echogramm anzeigen (steht nur zur Verfügung, falls eine Oktave gewählt ist und nicht der Gesamtpegel, siehe unten)
 - Abklingkurve anzeigen
 - Regressionsgerade anzeigen
 - Werte für Zielgröße anzeigen
 - Strichbreite für Abklingkurve erhöhen
 - Pegelbereich begrenzen
 - gemeinsamer Pegelbereich

• **Frequenzauswahl:**
 - 31 - 8000 Hz: Oktave auswählen
 - Gesamt: für Gesamtpegel

• **Zielgröße:** Für die Zielgrößen (Gütemaße) T30, T20, T10 und EDT können die jeweiligen Regressionsgeraden eingeblendet werden. Für T30, T20, T10 erfolgt die Auswertung von -5 dB bis -35/-25/-15 dB, bei EDT von 0 dB bis -10 dB ab dem Zeitpunkt der Emission der Schallquelle.
Diese Schaltfläche steht nur zur Verfügung, wenn als Berechnungsverfahren "Spiegelquellen --> Teilchen", "Spiegelquellen" oder "Teilchen" gewählt wurde und die Option "Berechne Echogramme und Abklingkurven" auf der Registerkarte "RIA-Auswertung" aktiviert wurde (siehe Kapitel 9.1.3.1). Nach Klick auf die Schaltfläche wird der Dialog **Nachhallzeiten** geöffnet.

Dialog Nachhallzeiten

Im Dialog **Nachhallzeiten** werden die aus dem Echogramm ermittelten Nachhallzeiten T30, T20, T10 oder EDT über der Frequenz an dem aktuellen Immissionspunkt angezeigt.

Über das Menü **Darstellung** kann die Anzeige der o.g. Nachhallzeit-Verläufe ein- und ausgeschaltet werden. Zusätzlich können angezeigt werden:

- die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 125 bis 4000 Hz) für die Raumakustik-Klassen A, B und C von Einzelbüros oder von Mehrpersonenbüros nach VDI-Richtlinie 2569:2016-02 oder
• die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 63 bis 8000 Hz) für die fünf Nutzungsarten RG A1 bis RG A5 der Raumgruppe A nach DIN 18041:2015-02:
 - RG A1 Musik
 - RG A2 Sprache / Vortrag
 - RG A3 Unterricht / Kommunikation sowie Sprache/Vortrag inklusiv
 - RG A4 Unterricht / Kommunikation inklusiv
 - RG A5 Sport

Diagramm-Legende siehe Kapitel 5.11, Abschnitt "Schaltflächen"

Diese Option ist standardmäßig deaktiviert („aus“). Falls mehr als eine Variante (siehe Kapitel 8.2) aktiv ist, kann nach Berechnung zwischen den Ergebnissen der aktiven Varianten umgeschaltet und die entsprechenden Nachhallzeit-Verläufe angezeigt werden (oder „alle“).

Die Anforderungen an die Nachhallzeit für die fünf Nutzungsarten RG A1 bis RG A5 nach DIN 18041:2015-02 hängen vom Raumvolumen ab. Standardmäßig wird das sich aus den Raumabmessungen im Dialog Raum/Raumdaten (siehe Kapitel 9.1.4.2) berechnete Raumvolumen verwendet.

Falls das effektive Raumvolumen von dem oben genannten abweicht (z.B. nach Eingabe von Hindernisquadrern, um andere - nicht rechteckige - Raumgeometrien zu modellieren), kann nach Aktivierung dieser Option das zur Berechnung der Anforderungen nach DIN 18041 anzusetzende Raumvolumen (in m³) eingegeben werden.

Sind mehr als ein Immissionspunkt vorhanden, können die räumlich über alle Immissionspunkte gemittelten Nachhallzeiten über das Menü Eigenschaften|Räumlich gemittelte Nachhallzeiten (Immissionspunkte) in einem Diagramm angezeigt werden (siehe Kapitel 9.1.4.4).
Kapitel 5 - CadnaR-Objekte

5.9 Immissionspunkt
5.10 Rechengebiet

Das Objekt "Rechengebiet" stellt ein geschlossenes Polygon dar. Es wird verwendet, um die Rasterberechnung auf bestimmte, abgegrenzte Bereiche zu beschränken. Es können mehrere Rechengebiete in einer Projektdatei eingegeben werden.

Die vorhandenen Rechengebiete werden in den Objekttabellen eingetragen (siehe Menü Tabellen|Rechengebiet). Die Reihenfolge der Rechengebiete in der Tabelle bestimmt die Reihenfolge der Berechnung.

Dialog Rechengebiet

- **Bezeichnung, ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Option "Gebiet von der Berechnung ausschließen":** Mit dieser Option ist es möglich, durch Eingabe eines weiteren Rechengebiets innerhalb eines vorhandenen Rechengebiets einen Bereich von der Berechnung auszuschließen. Innerhalb dieses Gebietes wird das Immissionspunktraster dann nicht berechnet.

- **Schaltfläche "Geometrie":** In diesem Dialog werden die Koordinaten x,y,z der Polygon-Stützpunkte angezeigt. Über das Kontextmenü der Tabelle können Zeilen hinzugefügt, gelöscht, verändert oder sortiert werden.

 Eine Höhenangabe im Geometriefenster des Rechengebiets hat keine Auswirkung auf die Höhe des Immissionspunktrasters.
Kapitel 5 - CadnaR-Objekte
5.10 Rechengebiet
5.11 Immissionspunktkette

- der A-bewertete Pegel und/oder
- der Sprachübertragungsindex (Speech Transmission Index, STI) ausgehend von einer zugewiesenen Punktschallquelle,

sowie die daraus abgeleiteten Gütemaße:

- \(L_{p,A,S,4\text{ m}}\): A-bewerteter Schalldruckpegel \(L_{p,A,S}\) in einem Abstand von 4.0 m von der Schallquelle,
- \(D_{2,S}\): räumliche Abklingrate in dB des A-bewerteten Schalldruckpegels \(L_{p,A,S}\) je Abstandsverdopplung,
- \(r_D\): Abstand (m) vom Sprecher, bei dem der Sprachübertragungsindex STI unter 0.50 absinkt (Ablenkungsabstand),
- \(r_P\): Abstand (m) vom Sprecher, bei dem der Sprachübertragungsindex STI unter 0.20 absinkt (Vertraulichkeitsabstand).

Dialog Immissionspunktkette
Vorgehensweise

Gehen Sie zur Anwendung der Immissionspunktkette wie folgt vor:

- Geben Sie eine Punktquelle mit Emission und einer Höhe von 1,2 m ein.
- Geben Sie eine Immissionspunktkette als Polygonzug mit mehreren Stützstellen ein.

In DIN EN ISO 3382-3:2012 wird eine Quell- und Immissionspunkthöhe von 1.2 m explizit gefordert. In CadnaR haben Immissionspunktketten eine Standardhöhe von 1.2 m. Es können auch andere Höhen verwendet werden. In diesen Fällen erfolgt eine Meldung.

Zur Auswertung des Gütemaßes $D_{2.5}$ (räumliche Abklingrate) sind nach DIN EN ISO 3382-3:2012 nur die Punkte der Immissionspunktkette im Abstandsbereich 2 m bis 16 m zu verwenden. Zudem soll die Anzahl der Punkte (Meßpositionen) in diesem Abstandsbereich 6 bis 10 betragen, mindestens jedoch 4.

- Wählen Sie im Dialog Immissionspunktkette eine Punktquelle aus, die als Ausgangspunkt der Berechnung für diese Kette verwendet wird (Zeile „Quelle (PQ)“).

Nach Auswahl einer Punktquelle wird von dieser Quelle zum ersten Punkt der IP-Kette eine gestrichelte Linie gezeichnet, um die Verknüpfung deutlich zu machen. Falls mehrere Immissionspunktketten im Projekt vorhanden sind, so ist für jede Kette die entsprechende Punktquelle auszuwählen.

Beispiel

Immissionspunktkette aus 7 Punkten mit zugewiesener Punktquelle
Kapitel 5 - CadnaR-Objekte
5.11 Immissionspunktkette

Zur Berechnung des Sprachübertragungsindex STI muss die Option „Echogramme und Abklingkurven berechnen ... für Immissionspunkte“ auf der Registerkarte „Teilchenmodell“ (siehe Kapitel 9.1.3.1, Abschnitt "Registerkarte „RIA-Auswertung“") aktiviert sein.

Bei der Berechnung von Immissionspunktketten sind folgende Punkte zu beachten:

- Um die Berechnung in Übereinstimmung mit Vorgaben der Norm DIN EN ISO 3382-3:2012 zu starten, wählen Sie den Befehl **Immissionspunktketten berechnen** im Menü **Berechnung** aus.
- Es werden der A-bewertete Pegel und ggf. der Sprachübertragungsindex (STI, siehe oben) für jede Kette getrennt und bei **alleiniger Emission** der in Bezug genommenen Punktquelle berechnet. Somit haben die anderen aktiven Quellen (auch solche Quellen, auf die nicht in Immissionspunktketten Bezug genommen wird) keine Auswirkung auf das Berechnungsergebnis der jeweiligen Immissionspunktkette.
- Im Gegensatz dazu wirken sich bei Klick auf das Taschenrechner-Symbol auf der Symbolleiste (oder bei Auswahl des Befehls **Immissionspunkte berechnen** im Menü **Berechnung**) oder bei Berechnungen des Rasters/Voxelgitters **alle aktiven Quellen** - die in allen IP-Ketten in Bezug genommenen Punktquellen und auch alle anderen aktiven Quellen - auf alle Berechnungsergebnisse aus.

Beachten Sie weiterhin, dass im Unterschied zu einzelnen Immissionspunkten an Immissionspunktketten keine spektrale Berechnung ausgeführt wird.
Dialogoptionen

- **Bezeichnung, ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Quelle (PQ):** zur Auswahl einer Punktquelle aus der Tabelle **Schallquellen**

- **Tabelle „Ketten-IPs“:** A-bewertete Pegel und der Sprachübertragungsindex (Speech Transmission Index, STI) über dem 3D-Abstand von der in Bezug genommenen Quelle.

- **L_{p,A,S,4m} (dB) / D_{2,S} (dB) / r_D (m) / r_P (m):** abgeleitete Gütemaße (Benennung siehe vorn)

- **Pfadbeurteilung nach VDI 2569:**
 - Anzeige der „Stufe der Schallausbreitung“ (Klassen 1 „günstig“ bis 3 „ungünstig“) bei simultaner Prüfung der Kriterien für D_{2,S} und L_{p,A,S,4m} gemäß Tabelle 9, VDI 2569:2016-02.

Die Details der Auswertung sind über den Befehl **Auswertung Immissionspunktketten** im Menü **Eigenschaften** ersichtlich (siehe Kapitel 9.1.4.5).
Vor der Berechnung von Immissionspunktketten führt CadnaR eine Konsistenzprüfung im Hinblick auf folgende Kriterien durch:

- Höhe aller Immissionspunkte der IP-Kette(n) und der in Bezug genommenen Punktquelle/n nicht bei 1.2 m,
- keine Punktquelle der/den IP-Kette/n zugewiesen,
- zu wenige gültige Polygonpunkte (mindestens 4, minimal 2 m Abstand zur Quelle),
- Frequenzbereich unvollständig zur STI-Berechnung (erforderlich: 125 bis 8000 Hz, siehe Kapitel 9.1.3.1, Abschnitt "Registerkarte „Allgemein“"): In diesem Fall wird der berechnete STI-Wert in eckigen Klammern angezeigt („[...]“).

Bei Zutreffen eines oder mehrerer der Kriterien wird ein Dialog angezeigt, das den Zugriff auf die zu ändernden Objekte/Einstellungen ermöglicht. Mit „Weiter“ kann die Berechnung trotz verletzter Kriterien fortgesetzt werden.
5 Kapitel - CadnaR-Objekte

5.11 Immissionspunktkette

Schaltflächen

- **Geometrie**: zeigt den Dialog Polygon: Geometrie an (siehe Kapitel 5.3).

- **Pegeldiagramm**: zeigt den A-bewerteten Schalldruckpegel \(L_{p,A,S} \) an allen Punkten der IP-Kette als Funktion des 3D-Abstands (m) von der Schallquelle und die Regressionsgerade im Abstands bereich 2 m bis 16 m (zudem Anzeige der Zahlenwerte für \(L_{p,A,S,4\,m} \) und \(D_{2,S} \)).

![Pegeldiagramm](image.png)

Die Punkten der IP-Kette im Abstands bereich 2 m bis 16 m, die zur Ermittlung der Regressionsgeraden (rot) verwendet werden, sind schwarz ausgefüllt, die außerhalb liegenden weiß ausgefüllt.

- **STI-Diagramm**: zeigt den Verlauf des Sprachübertragungsindex STI als Funktion des 3D-Abstands von der Schallquelle an (mit Linien der Werte für \(r_D \) (Ablenkungsabstand) und \(r_P \) (Vertraulichkeitsabstand)).

![STI-Diagramm](image.png)

Die Regressionsgerade wird über alle Punkten der IP-Kette gebildet (und nicht nur aus dem Abstands bereich 2 m bis 16 m).
• **Nachhallzeiten**: zeigt die räumlich über alle Immissionspunkte der IP-Kette gemittelten Nachhallzeiten T30, T20, T10 oder EDT (standardmäßig: T20) über der Frequenz an.

Über das Menü **Darstellung** kann die Anzeige der o.g. Nachhallzeit-Verläufe ein- und ausgeschaltet werden. Zusätzlich können angezeigt werden:

- die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 125 bis 4000 Hz) für die Raumakustik-Klassen A, B und C von Einzelbüros oder von Mehrpersonenbüros nach VDI-Richtlinie 2569:2016-02 oder

- die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 63 bis 8000 Hz) für die fünf Nutzungsarten RG A1 bis RG A5 der Raumgruppe A nach DIN 18041:2015-02:

 - RG A1 Musik
 - RG A2 Sprache / Vortrag
 - RG A3 Unterricht / Kommunikation sowie Sprache/Vortrag inklusiv
 - RG A4 Unterricht / Kommunikation inklusiv
 - RG A5 Sport
Legende:

<table>
<thead>
<tr>
<th>Linienfarbe</th>
<th>Anforderungen nach VDI 2569 für ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Einzelbüros</td>
</tr>
<tr>
<td></td>
<td>Mehrpersonenbüros</td>
</tr>
<tr>
<td></td>
<td>T\textsubscript{max} für Klasse C</td>
</tr>
<tr>
<td></td>
<td>T\textsubscript{max} für Klasse B</td>
</tr>
<tr>
<td></td>
<td>T\textsubscript{max} für Klasse A</td>
</tr>
<tr>
<td></td>
<td>(keine Anforderung) T\textsubscript{min}</td>
</tr>
</tbody>
</table>

Die Anforderungen an die Nachhallzeit für die fünf Nutzungsarten RG A1 bis RG A5 nach DIN 18041:2015-02 hängen vom Raumvolumen ab. Standardmäßig wird das sich aus den Raumabmessungen im Dialog **Raum/Raumdaten** (siehe Kapitel 9.1.4.2) berechnete Raumvolumen verwendet.

Falls das effektive Raumvolumen von dem oben genannten abweicht (z.B. nach Eingabe von Hindernisquadrern, um andere - nicht rechteckige - Raumgeometrien zu modellieren), kann nach Aktivierung dieser Option das zur Berechnung der Anforderungen nach DIN 18041 anzusetzende Raumvolumen (in m³) eingegeben werden.
5.12 Bitmap

Mit dem Objekt "Bitmap" aus dem Werkzeugkasten können Bitmap-Da-
teien innerhalb der Grafik platziert und skaliert werden. Es können mehre-
re Bitmaps in einer Datei vorhanden sein.

Ist noch keine Bitmap-Datei zugewiesen, erscheint im Rahmen das Bit-
map-Symbol. Ist bereits eine Bitmap-Datei zugewiesen worden und wird
ein zweites Objekt "Bitmap" eingefügt, so erhält dieses als Standardvorga-
be die letzte Bitmap-Datei zugewiesen.

Aktivierte Bitmaps können als Bodentextur in der 3D-Ansicht angezeigt
werden (siehe Kapitel 9.1.4.1). Dies gilt sowohl für Schwarzweiss-
Zeichnungen, als auch für farbige Bitmaps.

Dialog Bitmap

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1
 "Gemeinsame Eingabedaten"

- **Datei**: Klicken Sie auf das Dateiauswahlsymbol, um eine Bitmap-
- **Schaltfläche "Raumgrundfläche"**: Nach Klick auf diese Schaltfläche werden die Eckkoordinaten der Bitmap auf die aktuellen Raumabmessungen angepasst.

- **Dialogbereich „Größe und Lage der Bitmap“**: Alternativ sind folgende Angaben erforderlich:
 - die Koordinaten der linken unteren und der rechten oberen Ecke oder
 - die Koordinaten der linken unteren Ecke, die Auflösung der Bitmap in DPI (dots per inch) und der Maßstab oder
 - die Koordinaten von bis zu vier Referenzpunkten (siehe Abschnitt "Bitmap kalibrieren").

- **Schaltfläche "Bitmap kalibrieren"**: Nach Klick auf diese Schaltfläche wird der Dialog **Bitmap kalibrieren** geöffnet.

![Dialog Bitmap kalibrieren](image)

In diesem Dialog können die bekannten Koordinaten für bis zu 4 Referenzpunkte angegeben werden, die anschließend zur Kalibrierung einer Bitmap-Datei verwendet werden.

- **Referenzpunkte 1..4**: Schalten Sie über die Radio-Buttons die benötigte Anzahl der Referenzpunkte frei, für die Koordinatenangaben vorliegen. Geben Sie für diese Referenzpunkte die Koordinaten x, y ein. Dabei ist es sinnvoll, eine bestimmte Reihenfolge (z.B. im Uhrzeigersinn) einzuhalten, um sich die Reihenfolge der Eingabe leichter merken zu können.
- **Referenzpunkliste**: Die eingegebenen Referenzpunkte können gespeichert (Schaltfläche "Speichern"), eine vorhandene Liste aus dem Listenfeld gewählt oder die gewählte Liste gelöscht werden. Diese Option erleichtert den wiederholten Import von Bitmaps.

Im anschließenden Dialog erfolgt die Zuordnung der maximal Referenzpunkte 1..4 zu den entsprechenden Orten in der angezeigten Bitmap. Verwenden Sie die Zielmarke, um die Referenzpunkte nacheinander, in der Reihenfolge der Eingabe, anzuklicken und damit zu setzen. Verwenden Sie dazu ggf. die Zoom-Funktionen.

Dialogsymbole:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zielmarke zum Setzen des Referenzpunktes (Mausspitze ist Hotspot!)</td>
</tr>
<tr>
<td></td>
<td>Ansicht verkleinern</td>
</tr>
<tr>
<td></td>
<td>Ansicht vergrößern</td>
</tr>
<tr>
<td></td>
<td>Hilfe-Text anzeigen</td>
</tr>
<tr>
<td></td>
<td>Dialog schließen</td>
</tr>
</tbody>
</table>

- Nach Eingabe aller Referenzpunkte wird der Dialog **Ergebnis: Bitmap kalibrieren** angezeigt. Danach werden Sie aufgefordert, die kalibrierte Bitmap unter einem neuen Dateinamen abzuspeichern.

Beachten Sie, dass die Bitmap/s nicht in der **CadnaR-Datei** gespeichert werden, sondern lediglich die Referenz auf diese Datei/en. Falls die Bitmap-Dateien verschoben werden, können diese ggf. nicht mehr angezeigt werden. Hingegen werden Bitmap-Dateien, die im gleichen Verzeichnis wie die **CadnaR-Projektdatei (*.cni)** gespeichert sind, immer gefunden, da **CadnaR** dort standardmäßig nach den referenzierten Bitmaps sucht.
• **Option "Fixiere Bitmap":** Wenn diese Option aktiviert ist, kann die Größe und Lage der Bitmap nicht verändert werden.

• **Option "Bitmap ist transparent":** Bei aktivierter Option werden beim schwarz-weißen Bitmaps (mit 1-bit Farbtiefe) die weißen Bereiche transparent dargestellt. Standardmäßig ist diese Option aktiviert. Bitte beachten Sie, dass farbige Bitmaps (mit allen höheren Farbtiefen, z.B. 8-bit, oder 24-bit) in **CadnaR** auch transparent dargestellt werden, aber gegebenenfalls auf Grund von Beschränkungen des verwendeten Druckertreibers oder Druckertreiber-Modells nicht transparent ausgegeben werden.

• **Schaltfläche "Umwandeln in monochrom (für PDF)":** Mit dieser Option kann eine farbige Bitmap mit einer höheren Farbtiefe als 1-bit in eine monochrome Bitmap umgewandelt werden. Nach Umwandlung werden Sie von **CadnaR** aufgefordert, einen Dateinamen einzugeben.
5.13 Pegelrahmen

Dialog Pegelrahmen

- **ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Nachkommastellen**: Der Pegelwert wird entsprechend der gewünschten Stellenzahl gerundet.
• **Mittelpunkt und Länge/Breite:** xy-Koordinaten des Rahmenmittelpunkts, sowie dessen Länge und Breite (m)

• **Abmessungen maßstababhängig:** Bei aktivierter Option ändern sich die Abmessungen des Rahmens und die Schriftgröße in der Bildschirmdarstellung mit dem gewählten Maßstab. Um die gewünschte Größe eines Rahmens für einen bestimmten Maßstab einzurichten, ist es am einfachsten, diesen Maßstab auszuwählen und alle Einstellungen für einen Rahmen vorzunehmen. Diese Einstellungen erhalten auch alle nachfolgend eingefügten Objekte der gleicher Art. In diesem Falle wird bei Eingabe eines neuen Rahmens - nicht mehr ein Rahmen neu aufgezogen, sondern nur an die gewünschte Stelle einmal mit der Maustaste geklickt. Der erzeugte Rahmen ist dann genauso groß wie der erste.

• **Rahmen:** Bei aktivierter Option wird ein Rahmen gezeichnet. Gleichzeitig wird der Rahmen deckend, d.h. evtl. darunter befindliche Objekte werden verdeckt. Ist diese Option deaktiviert, wird kein Rahmen gezeichnet und gleichzeitig wirkt das Objekt transparent.

• **Winkel:** Die Eingabe eines Werts in Grad bewirkt eine Drehung des Rahmens um seinen Mittelpunkt bezogen auf die x-Achse. Es können positive (Drehung gegen Uhrzeigersinn) und negative Werte (Drehung im Uhrzeigersinn) eingegeben werden.

• **Ausrichtung:** Die gewünschte Ausrichtung des Textes innerhalb des Rahmens wird durch Anklicken der entsprechenden Option eingestellt. Die Vorschau zeigt die Ausrichtung an.

• **Schaltfläche "Schriftart":** ermöglicht die Auswahl von Schriftart, -schnitt, -grad etc.
5.14 Textrahmen

Dialog Textrahmen

- **ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Feld "Text"**: Geben Sie hier den anzuzeigenden Text ein. Zeilenumbrüche werden durch Drücken der RETURN-Taste eingefügt. Es können bis zu 30.000 Zeichen eingeben werden.

- **Mittelpunkt und Länge/Breite**: xy-Koordinaten des Rahmenmittelpunkts, sowie dessen Länge und Breite

- **Winkel**: Die Eingabe eines Werts in Grad bewirkt eine Drehung des Rahmens um seinen Mittelpunkt bezogen auf die x-Achse. Es können positive (Drehung gegen Uhrzeigersinn) und negative Werte (Drehung im Uhrzeigersinn) eingegeben werden.
• **Abmessungen maßstababhängig**: Bei aktiver Option ändern sich die Abmessungen des Rahmens und die Schriftgröße in der Bildschirmdarstellung mit dem gewählten Maßstab. Um die gewünschte Größe eines Rahmens für einen bestimmten Maßstab einzurichten, ist es am Einfachsten, diesen Maßstab auszuwählen und alle Einstellungen für einen Rahmen vorzunehmen. Diese Einstellungen erhalten auch alle nachfolgend eingefügten Objekte der gleicher Art. In diesem Falle wird - bei Eingabe eines neuen Rahmens - nicht mehr ein Rahmen neu aufgezogen, sondern nur an die gewünschte Stelle einmal mit der Maustaste geklickt. Der erzeugte Rahmen ist dann genauso groß wie der erste.

• **Ausrichtung**: Die gewünschte Ausrichtung des Textes innerhalb des Rahmens wird durch Anklicken der entsprechenden Option eingestellt. Die Vorschau zeigt die Ausrichtung an.

• **Rahmen**: Bei aktiver Option wird ein Rahmen gezeichnet. Gleichzeitig wird der Rahmen deckend, d.h. evtl. darunter befindliche Objekte werden verdeckt. Ist diese Option deaktiviert, wird kein Rahmen gezeichnet und gleichzeitig wirkt das Objekt transparent.

• **Schalfläche "Schriftart"**: ermöglicht die Auswahl von Schriftart, -schnitt, -grad etc.
5.15 Ausschnitt

![Ausschnitt-Dialog]

Dialog Ausschnitt

- **ID und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"
- **Linker/Rechter Rand**: x-Koordinaten
- **Unterer/Oberer Rand**: y-Koordinaten
- **Winkel**: Der Ausschnittrahmen kann durch Eingabe eines Winkels gedreht werden (positiver Winkel = Drehung gegen den Uhrzeigersinn). Beim Ausdruck dieses Ausschnitts wird der enthaltene Bereich entgegen der Winkelangabe transformiert ausgedruckt.
- **Beschreibung**: beschreibender Text
- **Ausschnittinhalt kopieren**: Zum grafischen Kopieren der Objekte innerhalb des Ausschnittbereichs, muss der Rahmen des Ausschnitts markiert sein. Drücken Sie dann die Tastenkombination STRG+C und fügen Sie anschließend den Inhalt der Zwischenablage mit STRG+V in eine andere Anwendung ein.
• **Ausschnittinhalt drucken**: Um einen Ausschnitt zu drucken, geben Sie diesem zunächst einen Namen. Im Plot-Designer (siehe Kapitel 9.1.1.5) kann dieser Ausschnitt gewählt und ausgedruckt werden.
5.16 Hilfspolygon

Das Objekt "Hilfspolygon" stellt einen offenen oder geschlossenen Polygonzug dar, der zur Unterstützung der grafischen Darstellung oder für andere Zwecke verwendet werden kann. Das Hilfspolygon ist innerhalb der Berechnung ohne Relevanz.

Dialog Hilfspolygon

- **Bezeichnung, ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Option "Polygon geschlossen"**: Ist diese Option aktiviert, werden Anfangs- und Endpunkt des Hilfspolygons miteinander verbunden und die Füllungsdefinition angewendet, wenn die Option "verwende globale Darstellung" deaktiviert ist.

- **Option "verwende globale Darstellung"**: Nach Deaktivierung dieser Option kann einem Hilfspolygon eine individuelle Farbe, Linienstärke und Linienart zugewiesen werden. Bei aktivierter Option (Standardeinstellung) werden die Darstellungsoptionen aus dem Dialog **Darstellung** (siehe Kapitel 9.1.4.6) verwendet.

- **Bereich "Linie"**: legt Farbe, Linienstärke und -art fest. Dies gelten nur, wenn die Option "verwende globale Darstellung" deaktiviert ist.
• **Bereich "Füllung"**: legt Farbe und Art der Füllung fest. Diese gelten nur für geschlossene Hilfspolygone, wenn die Option "verwende globale Darstellung" deaktiviert ist.

• **Option "Transparent"**: Ist diese Option aktiviert, scheint das Objekt unabhängig von der Einstellung im Dialog *Layer* durch (siehe Kapitel 9.1.4.9).

• **Monitor**: zeigt eine Vorschau die aktuelle gewählten Einstellungen
5.17 Symbol

Mit diesem Objekt können unterschiedliche Symbole in die Grafikdarstellung eingefügt und ggf. durch Angabe eines Winkels gedreht werden. Zudem können 3D-Symbole eingefügt werden (siehe Kapitel 9.1.7.6), die innerhalb der 3D-Spezialansicht angezeigt werden (siehe Kapitel 9.1.4.1).

Dialogoptionen

Mark, ID, ObjectTree, INFO

Listenfeld „Symbol“

siehe Kapitel 5.1

Aus dem Listenfeld „Symbol“ sind die vordefinierten (siehe unten) und die Nutzer-definierten Symbole auswählbar. Im Monitor wird eine Vorschau des gewählten Symbols angezeigt.

Mittelpunkt/Länge/Breite

Geometriedaten des Symbols

Abmessungen

Ist diese Option aktiviert, so wird die Größe des Symbols in der Bildschirmdarstellung mit dem gewählten Maßstab geändert.

Rahmen

Rahmen um Symbol ein-/ausschalten

Originalseitenverhältnis

Ist die Option „Originalseitenverhältnis“ aktiviert, wird das Seitenverhältnis des Symbols beim Vergrößern oder Verkleinern des Rahmens beibehalten.

Winkel (°)

Drehwinkel gegenüber Nord (=0°), entgegen dem Uhrzeigersinn positiv
Im unteren Teil des Dialogs **Symbol** stehen Optionen zur Verfügung, die sich nur auf 3D-Symbole beziehen.

Falls 3D-Symbole in der lokalen Symbol 3D-Bibliothek vorhanden sind (siehe Menü **Tabellen|Bibliotheken (lokal), Symbolbibliothek 3D**, siehe Kapitel 9.1.7.6), werden deren Bezeichnungen in diesem Listenfeld angezeigt.

Geben Sie hier die Höhe des 3D-Symbols über dem Raumboden ein. Standardmäßig ist eine Relativhöhe von \(z = 0 \text{ m} \) festgelegt.

Mit diesen Optionen kann das 3D-Symbol um die lokale \(x \)- oder \(y \)-Achse gedreht dargestellt werden. Damit können 3D-Symbole, die mit orthogonalen Objektgeometrien importiert wurden, in der 3D-Ansicht um die \(x \)-bzw. \(y \)-Achse gedreht angezeigt werden.

Standardmäßig sind folgende Symbole verfügbar:

- **Nordpfeil 1**
- **Nordpfeil 2**
- **Nordpfeil 3**
- **Kreis**
- **Kreuz**
- **Passermarke**
Kapitel 5 - CadnaR-Objekte
5.17 Symbol

Nutzerdefinierte Symbole
Es können auch eigene Symbole erstellt werden. Diese werden in der Symbolbibliothek verwaltet und stehen dann auch in der obigen Auswahlliste zur Verfügung (siehe Kapitel 9.1.7.6).

Einfügen von Bitmaps über die Zwischenablage
Bitmaps, die in die Windows-Zwischenablage kopiert wurden, können in die Grafik von CadnaR mittels der Tastenkombination STRG+V eingefügt werden. Die so eingefügten Bitmaps werden als Symbol-Objekte gespeichert.
5.18 Höhenpunkt

Der Höhenpunkt kann - neben der Höhenlinie (siehe Kapitel 5.19) und einem PolyMesh (siehe Kapitel 5.20) - dazu verwendet werden, eine beliebig berandete und gekrümmte Abschirmfläche im drei-dimensionalen Raum zu erzeugen.

Höhenpunkte als Einzelobjekte haben in CadnaR keine Relevanz, sondern nur dann, wenn diese zu einem PolyMesh gruppiert wurden.

Zu den weiteren Funktionalitäten im Zusammenhang mit der Anwendung des Objekts „PolyMesh“ siehe Kapitel 5.20.

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"
- **X/Y/Z (m):** Koordinateneingabe
Kapitel 5 - CadnaR-Objekte
5.18 Höhenpunkt
5.19 Höhenlinie

Die Höhenlinie kann - neben dem Höhenpunkt (siehe Kapitel 5.18) und einem PolyMesh (siehe Kapitel 5.20) - dazu verwendet werden, eine beliebig berandete und gekrümmte Abschirmfläche im drei-dimensionalen Raum zu erzeugen.

Höhenlinien als Einzelobjekte haben in CadnaR keine Relevanz, sondern nur dann, wenn diese zu einem PolyMesh gruppiert wurden.

Zu den weiteren Funktionalitäten im Zusammenhang mit der Anwendung des Objekts „PolyMesh“ siehe Kapitel 5.20.

- **Bezeichnung, ID, ObjectTree** und **Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Option „Verwende Stützpunkte als Höhenpunkte“**: Diese Option gestattet es, eine Vielzahl von Höhenpunkten als eine Höhenlinie zu speichern, wobei die Stützpunkte jeder Höhenlinie die Höhe der einzelnen Höhenpunkte aufweisen (mit Option „Höhe an jedem Punkt“). Ist diese Option aktiviert, so werden in der Grafik die Stützpunkte der Höhenlinie mit dem Symbol für Höhenpunkte, aber mit der Farbeinstellung der Höhenlinie dargestellt.

- **Schaltfläche "Geometrie"**: siehe Kapitel 5.20
Kapitel 5 - CadnaR-Objekte

5.19 Höhenlinie
5.20 PolyMesh

Das Objekt „PolyMesh“ stellt ein Sonderobjekt dar, das es ermöglicht, eine beliebig berandete und - gegebenenfalls - nicht-ebene abschirmende/ reflektierende/transmittierende Fläche im Raum zu erzeugen. Beachten Sie, dass das Polymesh nur mit dem Partikelmodell in CadnaR verwendet werden kann (siehe Kapitel 7.1 und 9.1.3). Darüber hinaus kann es nicht dazu verwendet werden, senkrecht stehende Dreiecke oder Unterschnittdungen zu erzeugen (d.h. zwei oder mehr abschirmende Flächen in z-Richtung).

Dialog PolyMesh

- **Bezeichnung, ID, ObjectTree und Info-Fenster** siehe Kapitel 5.1 "Gemeinsame Eingabedaten"

- **Fläche**: Flächeninhalt (in m²)

- **Schaltflächen "Absorption / Streuung / Transmission"**: siehe Kapitel 5.1, Abschnitt "Schaltflächen „Absorption/Streuung/Transmission“ für Hindernisse"

Die Bezeichnungen "O/U" beziehen sich auf die Ober- und die Unterseite des PolyMesh.
Dialog Polygon:Geometrie

- **Schaltfläche "Geometrie"**: In diesem Dialog werden die Koordinaten x,y,z der Polygon-Stützpunkte angezeigt. Über das Kontextmenü der Tabelle können Zeilen hinzugefügt, gelöscht, verändert oder sortiert werden.

![Polygon:Geometrie Dialog](image)

- **Listenfeld "Höhe"**: Zur Erzeugung der endgültigen Schirmfläche werden die Höhenpunkte des PolyMesh miteinander trianguliert.
 - Höhe aus Anfangs/Endpkt interpolieren: Es kann nur die Anfangshöhe eingegeben werden. Dann erhalten alle Polygonpunkte diese Höhe.
 - Höhe an jedem Punkt eingeben: Ist diese Option aktiviert, so kann die Höhe an jedem Punkt innerhalb der Tabelle editiert werden.

- **Tabelle Polygonpunkte**: enthält die Koordinaten x,y,z der Polygonpunkte. Bei Doppelklick in eine Zeile öffnet sich der Dialog Polygonpunkt.

- **3D-Länge**: Die Gesamtlänge (in m) des Linienobjekts - im Gegensatz zur sichtbaren 2D-Länge im CadnaR-Hauptfenster.

Dialog Polygonpunkt

siehe Kapitel 5.3
Das PolyMesh kann in Kombination mit den Objekten „Höhenpunkt“ (siehe Kapitel 5.18) und „Höhenlinie“ (siehe Kapitel 5.19) verwendet werden, um beliebig geformte abschirmende/reflektierende/transmittierende Flächen im Raum zu erzeugen.

Gehen Sie dazu wie folgt vor:

• Geben Sie zuerst den Rand der Abschirmfläche mittels des Objekts „PolyMesh“ ein.

• Editieren Sie ggf. die Höhe an jedem Punkt im Dialog Geometrie.

• Wählen Sie das Objekt „Höhenpunkt“ aus, um zusätzliche Höhenpunkte innerhalb des PolyMesh-Polygons zu definieren.
• Wählen Sie das Objekt „Höhenlinie“ aus, um zusätzliche Höhenpolygone innerhalb des PolyMesh-Polygons zu definieren.

Kontextmenübefehle

Nach Eingabe der Objekte können alle Höhenpunkte und Höhenlinien, die sich innerhalb des PolyMesh befinden, zu einer gemeinsamen Abschirmfläche verbunden werden. Klicken Sie dazu mit der rechten Maustaste auf das Polygon des PolyMesh, um das Kontextmenü anzuzeigen.

PolyMesh gruppieren

Bei Auswahl des Befehls PolyMesh gruppieren wird aus dem aktuellen Objekt „PolyMesh“ und allen innerhalb liegenden Höhenpunkten und Höhenlinien eine neue PolyMesh erzeugt, dass alle Höheninformationen in einem einzigen Objekt durch Triangulation über alle höhenbestimmenden Punkte abbildet. Es ergibt sich eine frei formbare, abschirmende/reflektierende/transmittierende 3D-Fläche im Raum.

PolyMesh entgruppieren

Triangulierte Linien

Die Triangulation zwischen den Stützstellen des PolyMesh erfolgt nach der Eingabe, bei zusätzlicher Eingabe von innen liegenden Höhenpunkten und -linien nach Auswahl des Befehls PolyMesh gruppieren. Die Darstellung der Triangulationslinien kann deaktiviert werden (siehe Kapitel 9.1.4.6).
Kapitel 6 - Objekte verändern

Mittels des Dialogs **Objekte verändern** können für eine oder mehrere Objekte verschiedene Aktionen ausgeführt werden. Der Befehl ist auswählbar:

- aus dem globalen Kontextmenü im **CadnaR**-Hauptfenster nach Mausklick auf die weiße Fläche und
- im Kontextmenü eines einzelnen Objektes.

Wird der Befehl aus dem Kontextmenü eines geschlossenen Polygons gewählt, so beziehen sich die Aktionen auf den Bereich innerhalb, außerhalb oder auf dem Rand des Polygons.

Bei Auswahl des Befehls **Objekte verändern** aus dem Kontextmenü eines einzelnen Objekts wird dieses Objekt von der anschließend gewählten Aktion ausgeschlossen.

Dialog Objekte verändern
Aktionen

Gegenwärtig stehen in CadnaR folgende Aktionen zur Verfügung:

- Löschen
- Attribut verändern
- Duplizieren
- Spline
- Stich
- Transformation
- Umwandeln in
- Erzeuge Etikett
- Paralleles Objekt
- Aktivierung
- Lösche Duplikate
6.1 Dialogoptionen

Die verfügbaren Arten von Einschränkungen (Bereich/Aktivierung/Objektart) können alleine oder in Kombination verwendet werden. Folgende Optionen stehen im Dialog **Objekte verändern** zur Verfügung.

Dieses Listenfeld dient zur Auswahl der Aktion, die auf die gewählten Objektart/en angewandt werden soll.

Dieser Dialogbereich steht nur zur Verfügung, wenn der Befehl **Objekte verändern** aus dem Kontextmenü eines geschlossenen Polygons (z.B. Rechengebiet) ausgewählt wurde. Folglich wird durch das Polygon eine geometrische Bedingung definiert. Ansonsten ist dieser Bereich grau.

Verfügbare Bereiche:

- innerhalb des Polygons: Es sind die Objekte betroffen, die vollständig innerhalb des geschlossenen Polygons liegen.
- ausserhalb des Polygons: Es sind die Objekte betroffen, die vollständig außerhalb des geschlossenen Polygons liegen.
- auf dem Rand des Polygons: Es sind die Objekte betroffen, die vom Linienzug des geschlossenen Polygons geschnitten werden.

Bei Mehrfachauswahl gelten auch kombinierte Bedingungen.

Mit Hilfe des Dialogbereichs „Aktivierung“ können die Objekte, die von der gewählten Aktion betroffen sind, auf Basis des Aktivierungszustandes (siehe Kapitel 5.1) oder der Zugehörigkeit zu einer Gruppe (siehe Kapitel 8.1.1) eingeschränkt werden.

Verfügbare Aktivierungszustände:

- nur aktivierte: Es sind nur die aktivierten Objekte der gewählten Objektart/en betroffen.
- nur deaktivierte: Es sind nur die deaktivierten Objekte der gewählten Objektart/en betroffen.
• Listenfeld für Gruppen:

Beispiel einer Gruppenliste, „(alle)“ gewählt

- Gruppenliste: Zusätzlich sind alle im der Tabelle Gruppen definierten Gruppen auswählbar (siehe Kapitel 8.1). In diesem Fall wird die Aktion nur auf die Objekte der gewählten Objektart/en angewandt, die zu der gewählten Gruppe gehören.

Beispiel einer Gruppenliste, Gruppe „Kompressoren“ gewählt

Attribute für Objekt „Punktquelle“ im Aufklapp-Menü

Auf diese Weise lassen sich komplexe Ausdrücke unter Verwendung von numerischen Operatoren formulieren (siehe Kapitel 9.1.5.7, Abschnitt "Formeln und Operatoren"). Die Operation wird nur ausgeführt, wenn die Bedingung erfüllt ist (Ausdruck <> 0).

<table>
<thead>
<tr>
<th>Objektart</th>
<th>Bedingung</th>
<th>betrifft ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punktquelle</td>
<td>Z>5</td>
<td>Punktquellen mit einer Höhe größer 5 m</td>
</tr>
<tr>
<td>Punktquelle</td>
<td>(Z>2)*(HA<5)</td>
<td>Punktquellen mit einer Höhe größer 2 m UND kleiner 5 m</td>
</tr>
<tr>
<td>Punktquelle</td>
<td>LWA>=90</td>
<td>Punktquellen mit LWA>=90 dBA</td>
</tr>
<tr>
<td>Punktquelle</td>
<td>(LWA<90)+(LWA>95)</td>
<td>Punktquellen mit LWA<90 dBA ODER LWA>95 dBA</td>
</tr>
</tbody>
</table>
Objektarten

Im Bereich „Objektarten“ werden die Objektart oder Objektarten gewählt, auf die die gewählte Aktion angewandt werden soll. Mehrfachmarkierungen sind möglich (Bereichsauswahl durch Ziehen bei gedrückter SHIFT-Taste, individuelle Mehrfachauswahl mit gedrückter STRG/CTRL-Taste).

Verfügbare globale Auswahlkriterien:

- Schaltfläche „Alle“: wählt alle Objektarten aus.
- Schaltfläche „Keine“: deselectiert alle Objektarten.

Schaltfläche OK

6.2 Aktionen

6.2.1 Löschen

CadnaR-Objekte können auf verschiedene Weisen gelöscht werden:

- in der Grafik:
 - Objekt markieren
 - DEL/ENTF-Taste drücken oder aus dem Kontextmenü den Befehl **Löschen** wählen
 - CadnaR springt automatisch zum nächsten Objekt der Objektgruppe

- in Objekttabellen:
 - Zeile in der entsprechenden Objekttabelle (Menu **Tabellen**) markieren
 - DEL/ENTF-Taste drücken oder aus dem Kontextmenü den Befehl **Löschen** wählen
 - CadnaR springt automatisch zu dem in der Tabelle nachfolgenden Objekt

- über den Dialog **Objekte verändern**:
 - Klick in die weiße Bildschirmfläche mit der rechten Maustaste
 - Aktion „Löschen“
 - Objektart oder -arten auswählen
 - Ausführung des Befehls bestätigen (Ja/Nein/Alle/Abbruch)

Die Aktion **Löschen** im Dialog **Objekte verändern** eignet sich insbesondere zum Löschen vieler und/oder unterschiedlicher, räumlich benachbarter Objekte.
Kapitel 6 - Objekte verändern
6.2.1 Löschen
6.2.2 Attribut verändern

Die Bezeichnung von Punktquellen soll automatisch vergeben werden. Zusätzlich soll eine zweistellige Zählziffer angefügt werden.

- Geben Sie mehrere Punktquellen ein.
- Klicken Sie mit der rechten Maustaste auf die weiße Fläche im CadnaR-Hauptfenster und wählen Sie die Befehl Objekte verändern aus dem Kontextmenü.
- Wählen Sie die Aktion „Attribut verändern“ und markieren Sie das Objekt „Punktquelle“.
- Behalten Sie die Option „Aktivierung: alle“ bei.

Nach Klick auf OK wird der Dialog Attribut verändern angezeigt.

- Wählen Sie aus dem Listenfeld das Attribut BEZ aus, aktivieren die Option „String-Ersetzung“ und geben Sie im Feld „Ersetzen durch“ ein: Punktquelle ##

Attribut BEZ durch „Punktquelle“ mit Zählziffer ersetzen
6.2.2 Attribut verändern

• Klicken Sie auf OK und bestätigen Sie in der Sicherheitsabfrage mit „Alle“.

Aus der Tabelle **Punktquelle** (im Menü **Tabellen|Quellen**) können Sie das Ergebnis der Aktion ersehen. In gleicher Weise kann der ID von Objekten automatisch erzeugt werden.

Die Höhe aller Hindernisquader im Projekt soll auf 3 m geändert werden. Gehen Sie dazu wie folgt vor:

• Geben Sie mehrere Hindernisquader ein.
• Wählen Sie die Befehl **Objekte verändern** aus dem Kontextmenü des **CadnaR**-Hauptfensters.
• Wählen Sie die Aktion „Attribut verändern“ für alle Hindernisquader.
• Wählen Sie aus dem Listenfeld im Dialog **Attribut verändern** das Attribut Z2 (Höhe des 2. Objektpunktes) aus, aktivieren die Option „String-Ersetzung“ und geben den Wert 3 ein.

[Dialogschirm mit Feldern „Attribut verändern“ und Optionen „Arithmetisch“ und „String-Ersetzung“]

In diesem Fall ist es gleichgültig, ob die Option „Arithmetisch“ oder „String-Ersetzung“ verwendet wird.

• Klicken Sie auf OK und bestätigen Sie in der Sicherheitsabfrage mit „Alle“.

Aus der Tabelle **Hindernisquader** ist ersichtlich, dass die Objekthöhen auf 3 m geändert wurden.

Objekthöhe ändern

Die Höhe aller Hindernisquader im Projekt soll auf 3 m geändert werden. Gehen Sie dazu wie folgt vor:

• Geben Sie mehrere Hindernisquader ein.
• Wählen Sie die Befehl **Objekte verändern** aus dem Kontextmenü des **CadnaR**-Hauptfensters.
• Wählen Sie die Aktion „Attribut verändern“ für alle Hindernisquader.
• Wählen Sie aus dem Listenfeld im Dialog **Attribut verändern** das Attribut Z2 (Höhe des 2. Objektpunktes) aus, aktivieren die Option „String-Ersetzung“ und geben den Wert 3 ein.

[Dialogschirm mit Feldern „Attribut verändern“ und Optionen „Arithmetisch“ und „String-Ersetzung“]

In diesem Fall ist es gleichgültig, ob die Option „Arithmetisch“ oder „String-Ersetzung“ verwendet wird.

• Klicken Sie auf OK und bestätigen Sie in der Sicherheitsabfrage mit „Alle“.

Aus der Tabelle **Hindernisquader** ist ersichtlich, dass die Objekthöhen auf 3 m geändert wurden.
Die Höhe der Schirme im Projekt soll ausgehend von den bestehenden Werten um 1 m erhöht werden. Gehen Sie dazu wie folgt vor:

- Geben Sie mehrere Schirme ein.
- Wählen Sie die Befehl **Objekte verändern** aus dem Kontextmenü des **CadnaR**-Hauptfensters.
- Wählen Sie die Aktion „Attribut verändern“ für alle Schirme.
- Wählen Sie aus dem Listenfeld im Dialog **Attribut verändern** das Attribut Z2 (Höhe des 2. Objektpunktes) aus, aktivieren Sie die Option „Arithmetisch“ mit folgendem Ausdruck: x+1

![Attribut verändern Dialog](image)

Attribut Z2 (Objekt-Endhöhe) um 1 m erhöhen

- Klicken Sie auf OK und bestätigen Sie in der Sicherheitsabfrage mit „Alle“.

Aus der Tabelle **Schirm** ist ersichtlich, dass die Objektendhöhen jeweils um einen Meter erhöht wurden.
Hilfspolygon: Farbe ändern

Die Linien- und Füllfarbe von Hilfspolygonen kann ebenfalls über die Aktion „Attribut verändern“ festgelegt werden. Deaktivieren Sie ggf. die Hilfspolygonen, deren Farbe nicht geändert werden soll.

Um die Hilfspolygonen umzufärben, gehen Sie wie folgt vor:

- Geben Sie mehrere Hilfspolygonen ein.
- Deaktivieren Sie einige Hilfspolygonen. Öffnen Sie dazu deren Editierdialoge und durch klicken Sie auf das Kästchen vor dem ID, bis kein Häkchen und der ID in rot angezeigt wird (ID).
- Wählen Sie die Befehl Objekte verändern aus dem Kontextmenü des CadnaR-Hauptfensters.
- Wählen Sie die Aktion „Attribut verändern“ für Hilfspolygon.
- Stellen Sie im Bereich „Aktivierung“ nur für die aktiven Objekte der Objektart „Hilfspolygon“ ein.
- Klicken Sie auf OK.

Attribut verändern für die aktivierten Hilfspolygon
• Wählen Sie aus dem Listenfeld im Dialog **Attribut verändern** das Attribut L_COLOR für Linienfarbe aus.

• Geben Sie für die Farbe rot unter „String-Ersetzung“ ein: 255,0,0

![Attribut verändern](image)

Hilfspolygonfarbe auf RGB(255,0,0) ändern

☞ Die Zahlen stehen für die RGB-Farbwerte rot, grün und blau.

• Klicken Sie auf OK und bestätigen Sie in der Sicherheitsabfrage mit „Alle“.

Sollte sich die Farbe der Hilfspolygone nicht verändern, so liegt die Ursache darin, dass standardmäßig die Option „globale Darstellung“ aktiviert ist. In diesem Fall werden die im Dialog **Darstellung** getroffenen Einstellungen verwendet (siehe Kapitel 9.1.4.6).

Um diese Einstellung zu ändern gehen Sie folgt vor:

• Wählen Sie im Dialog **Attribut verändern** das Attribut GLOBAL aus.

• Geben Sie im Feld „Ersetzen durch“ ein Leerzeichen ein.

☞ Das Leerzeichen wird als „aus“ interpretiert, ein Buchstabe x als „ein“.

• Klicken Sie auf OK und bestätigen Sie in der Sicherheitsabfrage mit „Alle“.

Aus den Dialogen der Hilfspolygone ist ersichtlich, dass die Farbeinstellung nur für die aktivierten Hilfspolygone geändert wurde.
Kapitel 6 - Objekte verändern
6.2.2 Attribut verändern

ício

Unter Verwendung des Attributs F_COLOR kann die Füllfarbe von geschlossenen Hilfspolygonen geändert werden.

In gleicher Weise kann die Textfarbe von Textrahmen und Pegelrahmen geändert werden (Attribute FONTCOLOR, siehe Kapitel 9.3).

Textvariablen können im Dialog Info-Fenster für jedes Objekt manuell eingegeben werden (siehe Kapitel 5.1, Abschnitt "Textvariablen definieren"). Mit Hilfe der nachfolgend beschriebenen Operation können Werte von Textvariablen gelesen und in CadnaR-Attribute geschrieben werden.

Die Operation kann sowohl auf numerische Attribute, als auch auf Text-Attribute angewandt werden. Werden Zeichenketten in numerische CadnaR-Attribute kopiert, so wird deren Wert ggf. auf Null zurückgesetzt. Numerische Werte in Textattribute zu kopieren ist dagegen möglich. Beachten Sie die Einschränkungen im Fall des Attributs ID (siehe Kapitel 5.1, Abschnitt "ID").

In diesem Beispiel wird der Wert der Textvariablen STI_male aus dem Dialog Info-Fenster von Immissionspunkten in das Attribut BEZ (Bezeichnung) kopiert.

Die Textvariable STI_male resultiert aus der Berechnung und Auswertung der Echogramme und Abklingkurven für Immissionspunkte (siehe Kapitel 9.1.3.1, Registerkarte „RIA-Auswertung“).
Diese Aufgabenstellung erfordert folgende Schritte:

- Geben Sie emittierende Punktquellen und Immissionspunkte ein.
- Berechnen Sie den STI-male an den Immissionspunkten.
- Klicken Sie nach der Berechnung mit der rechten Maustaste auf eine freie Fläche im CadnaR-Hauptfenster.
- Wählen Sie aus dem Kontextmenü den Befehl **Objekte verändern**.
- Wählen Sie im Dialog **Objekte verändern** die Aktion „Attribut verändern“ für die Objektart „Immissionspunkt“ aus und klicken Sie OK.
- Wählen Sie im Dialog **Attribut verändern** das Attribut BEZ (Bezeichnung) aus dem Listenfeld „Attribut“ aus.
- Aktivieren Sie die Option „String-Ersetzung“ und geben Sie ein unter: Suchen nach: * Ersetzen durch: {MEMO_STI_male}

(Zur Vereinfachung können Sie aus der Attributliste (>>) das Attribut MEMO auswählen und die Zeichenkette um „_STI_male“ ergänzen.)

Nach Ausführung der Aktion mit OK wird der Wert der Textvariablen STI_male in das Attribut BEZ aller aktiven Immissionspunkte geschrieben.

Attribut in Textvariable schreiben
Diese Aufgabenstellung erfordert folgende Schritte:

- Klicken Sie mit der rechten Maustaste auf eine freie Fläche im CadnaR-Hauptfenster.
- Wählen Sie aus dem Kontextmenü den Befehl **Objekte verändern**.
- Wählen Sie im Dialog **Objekte verändern** die Aktion „Attribut verändern“ für die Objektart „Punktquelle“ aus und klicken Sie OK.
- Wählen Sie im Dialog **Attribut verändern** das Attribut MEMOTXTVTAR (für Textvariable) aus dem Listenfeld „Attribut“ aus.
- Geben Sie in dem zusätzlich angezeigten Eingabefeld „Textvariable“ als Bezeichnung der Textvariablen ID_ORIG ein.
- Aktivieren Sie die Option „String-Ersetzung“ und geben Sie ein unter: Suchen nach: * Ersetzen durch: {ID}

Zur Vereinfachung können Sie aus der Attributliste (>>) das Attribut ID unmittelbar auswählen.

In diesem Fall könnte auch die Option „Arithmetisch“ verwendet werden („neuer Wert“ = ID, ohne geschweifte Klammer). Beachten Sie die Einschränkungen beim Ersetzen numerischer Attribute mit Zeichenketten.
6.2.3 Duplizieren

Dialog Duplizieren

Tragen Sie die Anzahl der gewünschten Kopien (in x, y oder z-Richtung) ein. In der Anzahl ist das Original enthalten. Bei negativen Eingaben werden die Duplikate in negativer Koordinatenrichtung erzeugt.

Geben Sie „1“ ein, um keine Duplikate in die betreffende Richtung zu erzeugen. Beispiel: (x,y,z) = (5,1,1) erzeugt 5 Objekte (Original + 4 Duplikate) in x-Richtung. Die Eingabe von „0“ erzeugt keine Duplikate.
Es kann die Art der Abstandsangabe gewählt werden. Bei Punktobjekten ist diese Unterscheidung nicht relevant.

- Abstände zwischen den Mittelpunkten: Abstand ausgehend vom Objektmittelpunkt
- Zwischenräume: Abstand ausgehend vom Objektrand
- x/y/z: Positive Zahlen erzeugen Duplikate in positiver, negative in negativer Koordinatenrichtung.

Nach Aktivierung der Option kann der Mittelpunkt der ausgewählten Objekte in x, y oder z-Richtung verschoben werden.

Nach Aktivierung der Option können die duplizierten Objekte in x, y oder z-Richtung gestreckt werden.

Nach Aktivierung der Option können die duplizierten Objekte um ihren gemeinsamen Mittelpunkt gedreht werden.

Beim Duplizieren und Drehen von Punktquellen mit zugewiesener Richtwirkung wird der Richtwirkungsvektor mittransformiert.
6.2.4 Erzwinge Rechteck

Kapitel 6 - Objekte verändern
6.2.4 Erzwinge Rechteck
6.2.5 **Erzwinge rechte Winkel**

Dieser Befehl steht als Aktion im Dialog **Objekte verändern** und im Kontextmenü von geschlossenen Polygone zur Verfügung. Der Befehl ist auf alle geschlossenen Polygone anwendbar.

Bei beliebigen Vielecken mit unterschiedlichen Winkeln zwischen zwei benachbarten Polygonpunkten können durch Angabe eines Fangwinkels rechte Winkel erzeugt werden.

<table>
<thead>
<tr>
<th>Ausgangs-Polygon</th>
<th>Polygon nach Anwendung des Kontextmenübefehls Erzwinge rechte Winkel mit einem Fangwinkel von 45°</th>
</tr>
</thead>
</table>
6.2.5 Erzwinge rechte Winkel
6.2.6 Punktereihenfolge ändern

Die Option „Punktereihenfolge umkehren“ kehrt die Reihenfolge der Polygonpunkte in der Polygonpunktliste (Dialog Geometrie) um. Somit wird der aktuelle Anfangs- zum neuen Endpunkt und umgekehrt.

Die Option „Punkt mit max. Gewicht wird neuer Punkt 1“ ermöglicht den ersten Polygonpunkt auf Basis eines Kriteriums zu definieren. Über den Doppelpfeil (>>) können folgende Parameter gewählt werden:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, z</td>
<td>Objektkoordinaten x, y, z</td>
</tr>
<tr>
<td>num</td>
<td>Nummer des Polygonpunktes (gezählt vom Anfangspunkt)</td>
</tr>
<tr>
<td>len</td>
<td>2D-Polygonlänge</td>
</tr>
<tr>
<td>len3</td>
<td>3D-Polygonlänge (unter Berücksichtigung der Höhe z)</td>
</tr>
<tr>
<td>dist</td>
<td>2D-Abstand zum Anfangspunkt</td>
</tr>
<tr>
<td>dist3</td>
<td>3D-Abstand zum Anfangspunkt (unter Berücksichtigung der Höhe z)</td>
</tr>
</tbody>
</table>

Die Gewichtsfunktion berücksichtigt den größten Wert des jeweiligen Parameters („maximales Gewicht“). Bei Negation (z.B. „-y“) wird der kleinste Wert genommen („minimales Gewicht“).
Kapitel 6 - Objekte verändern
6.2.6 Punktereihenfolge ändern
6.2.7 Spline

Dieser Befehl aus dem Kontextmenü oder als Aktion im Dialog **Objekte verändern** ist auf alle offenen oder geschlossenen Polygone anwendbar:

- Linienquelle
- Flächenquelle
- vertikale Flächenquelle
- Quaderquelle
- Hindernisquader
- Rechengebiet
- IP-Kette
- Hilfspolygon

Ein ausgewählter Streckenzug wird durch die geglättete Kurve unter Verwendung eines Polynoms dritten Grades ersetzt. Dadurch wird die Polygonform u.U. erheblich verändert.
Kapitel 6 - Objekte verändern
6.2.7 Spline
6.2.8 Stich

Mit diesem Befehl aus dem Kontextmenü, bei den Importoptionen oder über den Dialog Objekte verändern können die aus Polygonzügen gebildeten Objekte durch Weglassen von Punkten vereinfacht werden.

Dies spart Speicherplatz und erhöht die Rechengeschwindigkeit. Insbesondere importierte Daten können unnötig detailliert sein. Hier kann durch Anwenden des Befehls Stich eine erhebliche, die Genauigkeit nicht beeinträchtigende Datenreduktion erreicht werden.

Alle Objektpunkte, die einen größeren Abstand von der Verbindungslinie der beiden benachbarten Punkte als das mit „Stich“ bezeichnete Maß haben, werden gelöscht.

- Horizontal: Die eingegebene Bedingung wird nur für Abweichungen in der xy-Ebene geprüft und ggf. angewandt.

Dialogoptionen
Beispiel

Im Beispiel wird eine Linienquelle verwendet.

Ausgangszustand: Linienquelle mit vielen Polygonpunkten

Im Dialog **Stich** wird für obige Linienquelle ein Stich von 2 m eingegeben. Dies bewirkt das Löschen aller Punkte, auf die das o.g. Kriterium zutrifft.

Endzustand: Linienquelle aus zwei Polygonpunkten (in diesem Beispiel)
6.2.9 Zerstückeln

Im Dialog **Zerstückeln** können Sie

- die gewünschte Länge der neuen Teilstücke festlegen (Das Endstück kann eine abweichende Länge aufweisen.) oder
- die Anzahl der neuen, dann allerdings gleichlangen Teilstücke vorgeben oder
- die Linie an den vorhandenen Polygonpunkten brechen.
Kapitel 6 - Objekte verändern
6.2.9 Zerstückeln
6.2.10 Verbinde Linien

Mit diesem Befehl können einzelne Abschnitte linienförmiger Objekte der gleichen Objektart zu einem einzigen Objekt verbunden werden. Dabei werden die Parameter des Abschnitts, mit dem die anderen Abschnitte verbunden werden, auf diese übertragen.

![Verbinde Linien Dialogfenster](image)

Dialogoptionen

Fangradius (m)

Dies ist Radius der Kreisfläche, innerhalb der ein Anschlusspunkt gesucht wird. Dieser Fangradius ist der maximale Abstand der zu verbindenden Endpunkte.

Bei Aktivierung bezieht sich der Fangradius auch auf den 3D-Abstand, ansonsten nur auf den 2D-Abstand.
Kapitel 6 - Objekte verändern

6.2.10 Verbinde Linien

Suche am Anfangs-/Endpunkt
Je nach gewählter Option wird in einer oder in beiden Richtungen gesucht.

Rekursiv weiter suchen
Bei Aktivierung wird nach Verbindung zweier Linien solange weiter gesucht wie die Bedingungen zutreffen.

Teste ID
Bei Aktivierung werden nur die Linien mit gleichem ID verbunden.

Strategie bei Verzweigungen
Es kann gewählt werden, welche von mehreren möglichen Linien verbunden werden.
6.2.11 Transformation

Die Aktion „Transformation“ steht im Dialog **Objekte verändern** und im Kontextmenü aller Objekte zur Verfügung.

Über den Dialog **Objekte verändern** können mehrere Objekte - auch aus unterschiedlichen Objektarten - transformiert oder auch dupliziert werden (Option „Original behalten“). Bei Auswahl dieses Befehls aus dem Kontextmenü wird nur das aktuell gewählte Objekt transformiert/dupliziert.

Es stehen folgende Transformationstypen zur Verfügung:

- Drehung und Verschiebung
- affine Transformation
- beliebige Transformation
- Interaktiv

Beim Duplizieren durch Transformieren

Option „Original behalten“

Bei Anwendung der Koordinatentransformation auf Punktquellen mit zugewiesener Richtwirkung wird der Richtwirkungsvektor mittransformiert (siehe Kapitel 9.1.7.6, Abschnitt "Richtwirkung (lokal)").
Drehung + Verschiebung

Bei dieser Transformationsart sind die Koordinaten des Drehpunkts, der Drehwinkel und die Verschiebung in x-, y- und z-Richtung einzugeben. Es erfolgt dann zuerst die Drehung um den festgelegten Drehpunkt, anschließend die Verschiebung in die drei Koordinatenrichtungen.

Dialog Koordinatentransformation für Transformationstyp „Drehung + Verschiebung“

Beispiel

Ein Objekt soll dupliziert und das Duplikat um $\Delta x=-10$ m (d.h. nach links) und um $\Delta y=5$ m (d.h. nach oben) verschoben werden. Dazu sind folgende Eingaben erforderlich:

Nach Eingabe der Koeffizienten in der Transformationsmatrix erfolgt eine entsprechende Drehung und/oder Streckung. Die Werte der Transformationsmatrix ergeben sich bei Drehung der ausgewählten Objekte um den Winkel φ um den Nullpunkt gemäß:

\[
\begin{align*}
\begin{bmatrix} x' \\ y' \end{bmatrix} &= \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\
\begin{bmatrix} x' \\ y' \end{bmatrix} &= \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\end{align*}
\]

Zusätzlich kann eine achsenparallele Verschiebung durch Eingabe von Verschiebungswerten in x,y,z-Richtung erfolgen.

Die vorgegebene Koeffizientenmatrix erzeugt Duplikate mit gleicher Ortslage wie das/die Original/e.

Beliebige Transformation

Bei dieser Transformationsart können die neuen Werte für die drei Koordinatenrichtungen \(X_{\text{neu}}, Y_{\text{neu}}\) und \(Z_{\text{neu}}\) aus einer beliebigen Verknüpfung der alten Koordinatenwerte berechnet werden.

Dialog *Koordinatentransformation* für Transformationstyp „Beliebige Transformation“

Beispiel

Die nachfolgende Transformation erzeugt ein Duplikat, das um den doppelten x-Wert nach rechts und um 10 Meter nach links verschoben ist.

Die beliebige Transformation steht z.Z. nicht für die Objekte „Flächenquelle“, „Quaderquelle“ und „Hindernisquader“ zur Verfügung, da diese Objekte z.Z. nur achsenparallel ausgerichtet sein können. Diese Beschränkung gilt auch für Gruppen von Objekten, die eines dieser Objektarten enthalten.
Mit der interaktiven Transformation können Objekte mit Hilfe der Maus - also ohne Zahlenwerte eingeben zu müssen - dupliziert oder nur verschoben werden. Zur Auswahl von Objekten stehen alle Optionen im Dialog **Objekte verändern** zur Verfügung. Bei Klick mit der rechten Maustaste in die weiße Bildschirmfläche wird - wie üblich - die gesamte Projektfläche angesprochen.

Die interaktive Transformation steht nicht über das Kontextmenü von einzelnen Objekten zur Verfügung.

Es sollen die Hindernisquader innerhalb des Polygonobjektes (hier ein Rechengebiet) dupliziert und verschoben werden.

Gehen Sie dazu wie folgt vor:

- Wählen Sie aus dem Kontextmenü des Polygons den Befehl **Objekte verändern**.
- Wählen Sie als Aktion „Transformation“, als Bereich „Innerhalb des Polygons“ und für die Objektart „Hindernisquader“ aus und klicken Sie OK.
- Wählen Sie im nachfolgenden Dialog **Koordinatentransformation** den Typ „Interaktive Transformation“ aus, aktivieren Sie die Option „Original behalten“ und klicken Sie OK.
- Anschließend wird der Dialog **Interaktive Transformation** geöffnet.
Kapitel 6 - Objekte verändern

6.2.11 Transformation

Dialog Interaktive Transformation (betroffene Objekte umrahmt)

Der angezeigte Rahmen grenzt alle durch die Auswahloptionen ausgewählten und von der Aktion betroffenen Objekte ab. Es stehen folgende Schaltflächen zur Verfügung:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>ausgewählte Objekte verschieben/dehnen/drehen</td>
</tr>
<tr>
<td>🔍</td>
<td>Vergrößern</td>
</tr>
<tr>
<td>🔍🔍</td>
<td>Verkleinern</td>
</tr>
<tr>
<td>❓</td>
<td>Hilfe aufrufen</td>
</tr>
<tr>
<td>✅</td>
<td>Transformation bestätigen (Dialog verlassen)</td>
</tr>
</tbody>
</table>

- Um die umrahmten Objekte zu verschieben, klicken Sie bei gewählter Option 🔄 auf den Rahmen und halten Sie die linke Maustaste gedrückt.

- Verschieben Sie jetzt den Rahmen an die gewünschte Stelle und lassen Sie die linke Maustaste los.

Mit Hilfe der Vergrößerungs-/Verkleinerungslupe kann ein kleinerer oder größerer Projektausschnitt angezeigt werden.
Bei reiner Translation sieht das Ergebnis wie nachfolgend dargestellt aus:

Dialog Interaktive Transformation (betroffene Objekte verschoben)

- Verlassen Sie den Dialog Interaktive Transformation durch Klick auf die Schaltfläche OK.

Nach Bestätigung der Aktion mit „Alle“ werden die ausgewählten Objekte an die neue Position transformiert.

Interaktiv verschobene Hindernisquader
Es stehen noch folgende weiteren Optionen zur Verfügung:

- Durch Verziehen des Rahmens an einem der Polygonpunkte können die ausgewählten Objekte gedehnt werden.

Um die interaktive Transformation ohne Aktion zu beenden, schließen Sie den Dialog **Interaktive Transformation** über das Symbol „Dialog schließen“ in der rechten oberen Ecke (×).
6.2.12 Umwandeln in

Um ein einzelnes Objekt umzuwandeln, wählen Sie aus dessen Kontextmenü den Befehl Umwandeln in aus. Im Listenfeld werden alle zur Verfügung stehenden Zielobjektarten angezeigt.

Wählen Sie im Dialog Objekte verändern die Aktion "Umwandeln in" und wählen Sie die Ausgangsobjektart aus. Wählen Sie nach Klick auf OK im anschließenden Dialog die Zielobjektart aus.
Kapitel 6 - Objekte verändern

6.2.12 Umwandeln in
6.2.13 Erzeuge Etikett

Diese Aktion/Befehl erzeugt einen Textrahmen, der einen oder auch mehrere objekt-spezifische Parameter anzeigt. Die Aktion oder der Befehl \textbf{Erzeuge Etikett} steht zur Verfügung:

- als Befehl im Kontextmenü eines Objektes oder
- als Aktion im Dialog \textbf{Objekte verändern}, um mehrere und/oder unterschiedliche Objekte mit einem Etikett zu versehen.

Die Platzierung gibt die Ausrichtung des Etiketts am Objekt vor.

- Auswahl „(Textvariable)“: Bei dieser Auswahl kann im Feld „Variable“ der Name der Textvariablen eingegeben werden (siehe Beispiel).
- Auswahl „(benutzerdefiniert)“: Bei dieser Auswahl kann der Text im Feld „Code“ editiert werden (Beispiele siehe unten).
Nachkommastellen/Auf- runden ab letzte Stelle

Diese Eingaben sind nur bei numerischen Attributen relevant.

Schaltfläche „Textrah- men“

Die Schriftausrichtung, -größe und -art wird über die Schaltfläche „Textrahmen“ eingestellt.

Beispiele

Größe/Schriftart festlegen

Attribut auswählen

Wählen Sie das gewünschte Attribut (z.B. Bezeichnung) aus dem Listenfeld im Dialog aus. Nach Ausführung der Aktion wird die Objektbezeichnung an der ausgewählten Position am Objekt angezeigt.

Beispiel: Punktquellen mit Etiketten zeigen die Objekt-Bezeichnung an
Die Auswahl „(Textvariable)“ ermöglicht die Anzeige einer objekt-spezifischen Textvariable, die im Info-Fenster eines jeden betroffenen Objekts definiert wurde. Falls keine betreffende Textvariable gefunden wird, wird nichts angezeigt.

Beispiel: Punktquellen mit Textvariable „Leistung“ in kW

- Um die Textvariable „Leistung“ in einem Etikett anzuzeigen, geben Sie nach Auswahl von „(Textvariable)“ die Variablenbezeichnung „Leistung“ ein.

Beispiel: Wert der Textvariablen „Leistung“ in einem Etikett anzeigen
Mit dieser Operation ist es auch möglich, den Ergebniswert eines raumakustischen Gütemaßes (siehe Kapitel 9.1.3.1, Registerkarte „RIA-Auswertung“) aus dem Info-Fenster eines oder mehrerer Immissionspunkte in ein Etikett zu schreiben, z.B. den STI_male (siehe Kapitel 1.8.4 im Handbuch „CadnaR-Berechnungsbeispiele“).

Die Auswahl „(benutzerdefiniert)“ gestattet es, den Code - zum Beispiel - um eine Einheitenbezeichnung zu erweitern. Gehen Sie dazu wie folgt vor:

- Alternativ kann die Auswahl aus dem Kontextmenü eines Objekts erfolgen. Dann wird das Etikett nur für dieses Objekt erzeugt.

- Wählen Sie aus dem Listenfeld „Inhalt“ die Option „(Textvariable)“ aus und geben Sie die Variable „Leistung“ ein.

- Wählen Sie jetzt aus dem Listenfeld „Inhalt“ die Option „(benutzerdefiniert)“ aus und ergänzen Sie den Text im Feld „Code“ um „, kW“.

Damit sieht der Dialog wie folgt aus:

![Erzeuge Etikett Dialogbox](image)

Beispiel: Wert der Textvariablen „Leistung“ mit Einheit in einem Etikett anzeigen
Weiterhin ermöglicht die Auswahl „(benutzerdefiniert)“, mehrere Attribute in einem einzigen Etikett anzuzeigen. In nachfolgendem Beispiel werden die Bezeichnung und der ID in einem gemeinsamen Textrahmen angezeigt.

- Wählen Sie im Dialog **Erzeuge Etikett** aus dem Listenfeld „Inhalt“ das Attribut „Bezeichnung“ aus.
- Wählen Sie jetzt am oberen Ende der Liste „Inhalt“ die Option „(benutzerdefiniert)“ aus.
- Vervollständigen Sie die Code-Eingabe wie nachfolgend angezeigt:

 Bezeichnung = #(ObjAtt, %1, BEZ)
 ID = #(ObjAtt, %1, ID)

 Auch in diesem Fall kann zusätzlicher Text eingegeben werden.

Danach sieht der Dialog wie folgt aus:

- Passen Sie gegebenenfalls die Größe des Textrahmens wie beschrieben an (siehe Abschnitt "Größe/Schriftart festlegen").
Kapitel 6 - Objekte verändern

6.2.13 Erzeuge Etikett
6.2.14 Paralleles Objekt

Dieser Befehl ist auf alle offenen oder geschlossenen Polygone anwendbar. Der Befehl steht entweder als Aktion im Dialog **Objekte verändern** oder direkt aus dem Kontextmenü eines Objekts zu Verfügung.

Wird bei Anwendung der Aktion/Befehl **Paralleles Objekt** auf ein offenes Polygon eine Objektart gewählt, die ein geschlossenes Polygon darstellt, wird bei gleichzeitiger Auswahl von „Links vom ...“ und „Rechts vom markierten Objekt“ ein geschlossenes Polygon um das Linienobjekt erzeugt.
Kapitel 6 - Objekte verändern
6.2.14 Paralleles Objekt
6.2.15 Aktivierung

Mit dieser Aktion im Dialog **Objekte verändern** oder im Kontextmenü von Objekten können die betroffenen Objekte in einen anderen Aktivierungszustand (siehe Kapitel 5.1, ID) versetzt werden, ohne jeweils den Objektdialog öffnen zu müssen. Im Dialog **Aktivierung** zeigen die linken Kontrollkästchen die möglichen Ausgangszustände und die rechten den Zustand nach Ausführung der Aktion an.

Die gewählten Objekte sind nach Ausführung des Befehls deaktiviert.

Wählen Sie aus der Auswahlliste den Zustand aus, den die ausgewählten Objekte erhalten sollen. Alle betroffenen Objekte - egal in welchem Aktivierungszustand sie vorher waren - erhalten den neuen Zustand.

Zustand „deaktiviert“

Bei Auswahl “deaktiviert” werden alle betroffenen Objekte auf jeden Fall ausgeschaltet. Dies ersehen Sie auch aus den weißen rechten Kontrollkästchen.

Zustand „aktiviert“

Bei Auswahl “aktiviert” werden alle betroffenen Objekte auf jeden Fall eingeschaltet. Dies ist auch aus den schwarzen Häkchen in den Kontrollkästchen zur Rechten ersichtlich.

Zustand „egal“

Bei Auswahl „egal“ sind die Objekte weder aktiv noch deaktiv. Die ist der Ausgangszustand.

Zustand „allgemein“

Bei Wahl von „allgemein” besteht die Möglichkeit, die Aktivierung individuell durch Anklicken der rechten Kontrollkästchen einzustellen. Für jeden der drei möglichen Ausgangszustände (siehe die linken Kontrollkästchen) über die rechten Kontrollkästchen den neu Endzustand getrennt definiert werden.
Kapitel 6 - Objekte verändern
6.2.15 Aktivierung
6.2.16 Lösche Duplikate

Mit diesem Befehl im Dialog Objekte verändern können typengleiche Objektduplikate auf Basis bestimmter Kriterien gelöscht werden. Diese Funktion ist nach Import von Daten aus anderen Anwendungen (z.B. aus DWG oder DXF) manchmal notwendig.

Nach Auswahl eines Objekttyps wirkt sich der Befehl nur auf diese Objekte aus (z.B. nur auf Quaderquellen).

Nach Bestätigen mit OK öffnet sich der Dialog Lösche Duplikate, in dem Bedingungen definiert werden können.
Dialogoptionen

Bei Aktivierung von Bedingungen wird vor dem Löschen die Bedingung mit den Duplikaten verglichen. Hierbei wird das Objekt, das sich als erstes in der jeweiligen Objekttabelle befindet als Original betrachtet, die nachfolgenden als Duplikate.

Nur bei Übereinstimmung wird das Duplikat gelöscht. Wurden mehrere Bedingungen gesetzt, müssen diese gemeinsam zutreffen (logisches UND).

Als einschränkende Bedingung können einzeln oder in Kombination gewählt werden:

- Bezeichnung
- ID
- Geometrie:
 - Fang: Es ist eine Abweichung (in Meter) von der zu vergleichenden Geometrie einzugeben. Objekte, die um nicht mehr als diesen Wert vom Original abweichen, werden gelöscht.
 - Polygonrichtung egal: Ist diese Option aktiviert, werden Duplikate auch dann gelöscht, wenn diese auf Basis der angegebenen Kriterien übereinstimmen, bis auf den vertauschten Anfangs-/Endpunkt.
 - nur 2D: Ist diese Option aktiviert, werden Duplikate auch dann gelöscht, wenn die Höhenkoordinaten (z) nicht, aber die xy-Koordinaten auf Basis der angegebenen Kriterien übereinstimmen.
Kapitel 6 - Objekte verändern
6.2.16 Löse Duplikate

- Objekt mit maximalem Gewicht bleibt erhalten: Diese Option ermöglicht die Definition eines Kriteriums auf Basis von Objektattributen (Schaltfläche „>>“), um den Löschvorgang zu steuern.

 - Gewicht: Auf Basis der vorhandenen Objektattribute kann eine Gewichtsfunktion definiert werden.

 Beispiel 1: Gewichtsfunktion ist das Höhenattribute z. Beim Löschen bleibt das Objekt mit der höchsten Objekthöhe erhalten.

 Beispiel 2: Gewichtsfunktion ist das Höhenattribute -z. Beim Löschen bleibt das Objekt mit der niedrigsten Objekthöhe erhalten.

- Option „sonstige Attribute“: z.Z. nicht verfügbar
Kapitel 6 - Objekte verändern
6.2.16 Lösche Duplikate
6.3 Kontextmenü

Das objekt-bezogene Kontextmenü steht zur Verfügung, nachdem Objekte eingegeben wurden.

Der Editierdialog des gewählten Objekts wird angezeigt.

Das gewählte Objekt wird unmittelbar - ohne Rückfrage - gelöscht. Der Löschvorgang kann rückgängig gemacht werden (siehe Kapitel 9.1.2).

Dieser Befehl ermöglicht das Duplizieren des gewählten Objekts. Zu weiteren Details siehe Kapitel 6.2.3.

Dieser Befehl ermöglicht die Anwendung einer kubischen Spline-Interpolation auf Polygonobjekte. Zu weiteren Details siehe Kapitel 6.2.7.

Das Objekt, aus dessen Kontextmenü der Befehl gewählt wurde, kann transformiert oder kopiert und transformiert werden. Zu weiteren Details siehe Kapitel 6.2.11.

Die Transformationsart „Interaktive Transformation“ steht über den Kontextmenübefehl nicht zur Verfügung.
Kapitel 6 - Objekte verändern

6.3 Kontextmenü

Erzeuge n-Eck
Mit diesem Kontextmenü-Befehl kann aus einem Hilfspolygon, das aus genau zwei Polygonpunkten besteht, ein n-Eck erzeugt werden. Geben Sie dazu im Dialog **Erzeuge n-Eck** die Anzahl der zu erzeugenden Segmente ein. Dabei wird der erste Polygonpunkt des Hilfspolygons als Mittelpunkt und der zweite Polygonpunkt als Radius der zu erzeugenden n-Ecks verwendet.

Erzeuge Etikett

Paralleles Objekt

Umwandeln in
Das Objekt, aus dessen Kontextmenü dieser Befehl gewählt wurde, kann in ein anderes Objekt umgewandelt werden. Zu weiteren Details siehe Kapitel 6.2.12.

Rasterpunkt löschen (bei Rechengebieten)
Löscht Rasterpunkte inner- oder außerhalb eines Rechengebiets.

PolyMesh gruppieren / entgruppieren
Bei Auswahl des Befehls **PolyMesh gruppieren** wird aus dem aktuellen Objekt „PolyMesh“ (siehe Kapitel 5.20) und allen innerhalb liegenden Höhenpunkten und Höhenlinien eine neues PolyMesh erzeugt, dass alle Höheninformationen in einem einzigen Objekt durch Triangulation über alle höhenbestimmenden Punkte abbildet. Es ergibt sich eine frei formbare, abschirmende/reflektierende/transmittierende 3D-Fläche im Raum.

Bei einem vorhandenen PolyMesh werden bei Auswahl des Befehls **PolyMesh entgruppieren** alle das PolyMesh bildenden Objekte (Höhenpunkte, Höhenlinien und das erzeugende PolyMesh selbst) wieder entgruppiert. Damit geht die gemeinsam gebildete 3D-Schirmfläche wieder verloren und es verbleibt nur das (äußere) PolyMesh-Objekt selbst, da Höhenpunkte und Höhenlinie in **CadnaR** keine Wirkung haben.
Diese Aktion ist im Kontextmenü aller offenen Polygone verfügbar. Dabei werden die aktiven Polygone am Kreuzungspunkt mit dem schneidenden Polygon gebrochen. Die Aktion bricht Objekte auch dann, wenn die brechende Linie unmittelbar über eine Polygon-Stützpunkt verläuft.

Beachten Sie, dass deaktivierte Objekte nicht gebrochen werden und Linienobjekte keine Flächenobjekte brechen.

Liegt die brechende Fläche vollständig innerhalb der zu brechenden Fläche, so werden zwei Objekte dieses Typs erzeugt. Dabei schneidet die innenliegende, kleinere Fläche ein „Loch“ in die äußere, größere Fläche. Die Verbindungslinie ist ein „Kanal“, um das entstehende Ringpolygon aus einem einzigen Linienzug darstellen zu können.

Beachten Sie, dass deaktivierte Objekte nicht gebrochen werden.
Kapitel 6 - Objekte verändern
6.3 Kontextmenü
Kapitel 7 - Berechnungsverfahren

In CadnaR sind verschiedene Berechnungsverfahren implementiert, die alle zur Berechnung des lokalen Pegels oder der räumlichen Pegelverteilung in Räumen verwendet werden. Alle Verfahren unterliegen jeweils unterschiedlichen Voraussetzungen und Einschränkungen und sind daher für unterschiedliche Aufgabenstellungen geeignet. Andererseits ergänzen sie sich auch im Hinblick auf die erhaltenen Ergebnisse.

Die Berechnungen in CadnaR verwenden grundsätzlich Multi-Threading (gleichzeitige Nutzung aller Rechenkerne auf Mehrkern-Prozessoren) mit folgenden Merkmalen:

• Berechnungsverfahren „Spiegelquellen“: Die Beugungsberechnung wird multi-threaded durchgeführt. Die Reflexionsrechnung wird single-threaded (d.h. auf einem Kern) durchgeführt.

• Berechnungsverfahren „Teilchen“: Die Berechnung wird multi-threaded durchgeführt.

Beim kombinierten Verfahren „Spiegelquellen --> Teilchen“ gelten die obigen Regeln jeweils gleichlautend.

• Berechnungsverfahren „Diffusfeld (statistisch)“ und „VDI 3760“: Die Berechnungen werden single-threaded durchgeführt.

Im Rahmen dieses Kapitels werden die Grundlagen und die prinzipielle Vorgehensweise bei der Berechnung für jedes in CadnaR implementierte Verfahren erläutert. Für die Berechnungsverfahren „Spiegelquellen“ und „Teilchen“ werden zusätzlich Anwendungshinweise in Bezug auf die Konfigurationsoptionen gegeben.

Ausführliche Beispiele für jedes in CadnaR implementierte Berechnungsverfahren finden Sie im „CadnaR Tutorial“ (als separate pdf-Datei).
7.1 Schallteilchen

Berechnungsprinzip des Teilchenmodells: Teilchenstrahlen und Zählvolumen
Der Berechnung kann in vier Schritte gegliedert werden:

1. Im ersten Schritt werden die von der oder den Quellen ausgehenden Teilchen zufällig erzeugt. Der verwendete Algorithmus stellt sicher, dass die Richtungsverteilung der von der/den Quelle(n) ausgehenden Teilchen zufällig ist, aber auch bei hohen Teilchenzahlen oder mehreren Iterationen keine Richtungshäufungen aufweist. Es werden so viele Teilchen - verteilt auf alle Quellen - erzeugt, wie in der Berechnungsconfiguration, Abschnitt „Teilchen“ vorgegeben wurden (standardmäßig 100.000 Teilchen, absolut). Die Lage der Ersatz-Punktquellen bei Linien- und Flächenquellen ist ebenfalls zufällig. Beide Vorgehensweisen stellen sicher, dass keine systematischen räumlichen Pegelabweichungen (negativ oder positiv) auftreten. Bei zu geringer Teilchenzahl treten - naturgemäß - zwischen verschiedenen Rechenläufen bei ein- und derselben Quellanordnung Pegelunterschiede auf (beschrieben durch die Standardabweichung).

2. Im zweiten Schritt wird der Weg der so erzeugten Teilchen im Raum bis zu der eingestellten maximalen Laufzeit oder Ordnung verfolgt. Bei der Reflexion an Raumbegrenzungsflächen oder an Hindernissen wird nach den Gesetzen der geometrischen Raumakustik die Richtung des reflektierten Teilchens ermittelt. Dabei wird die Energie, die jedes Teilchen repräsentiert, durch die Absorptionseigenschaften des Reflektors gemindert. Falls die Streuung an Raumbegrenzungsflächen oder an Hindernissen zugelassen ist (siehe Kapitel 9.1.3.1, Registerkarte „Teilchenmodell“), werden die einfallenden Teilchen im Verhältnis des Streungsgrades gestreut oder reflektiert. Dabei wird eine räumliche Verteilung der gestreuten Energie entsprechend einem Lambertschen Strahler verwendet („ideal diffus“).

Falls die Transmission von Hindernissen zugelassen ist (siehe Kapitel 9.1.3.1, Registerkarte „Teilchenmodell“), werden die einfallenden Teilchen im Verhältnis des Transmissionsgrades transmittiert oder reflektiert. Teilchen erfahren bei der Transmission keine Richtungsänderung.
3. Im dritten Schritt wird die Energie aller in einem Zählvolumen eintreffenden Teilchen aufsummiert. Das einzelne Zählvolumen entspricht einer 3D-Raumzelle, festgelegt durch die Abmessungen des Voxelgitters. Standardmäßig beträgt das Zählvolumen 1 m³ (mit den Abmessungen 1*1*1 m). Die Durchstoßlänge eines Teilchens innerhalb eines Voxel wird als Kompensationsgröße für die unterschiedlich großen Raumwinkel verwendet, die je nach Einfallsrichtung des Teilchens abgedeckt werden.

Die Abschirmwirkung von Hindernissen wird im Teilchenmodell nicht explizit berücksichtigt. Daher enthält das Berechnungsprotokoll bei Verwendung des Teilchenmodells auch kein Abschirmmaß A_{bar}, sondern nur den Dämpfungsterm A_{atm} und den Reflexionsverlust RV (siehe Kapitel 9.1.3.2).

Beim Teilchenmodell können keine Strahlen zu den Immissionspunkten angezeigt werden (siehe Kapitel 5.9, Option "Generiere Strahlen (als Hilfspolygone)"), da keine dezidierten Strahlen dorthin ausgesandt werden. Aus demselben Grund können in diesem Fall der arbeitsplatz-bezogene Emissions-Schalldruckpegel L_{pA} (dB) von Quellen, die einem Immissionspunkt zugeordnet wurden, nicht im Immissionspunkt-Pegel berücksichtigt werden (siehe auch „Teilchen-Ping-Pong“, Kapitel 9.1.4.1).
Beim kombinierten Verfahren „Spiegelquellen --> Teilchen“ wird das Spiegelquellen-Verfahren bis und einschließlich der dort eingestellten Ordnung n angewandt. Für die höheren Ordnungen (beginnend mit n+1) bis zur vorgegebenen maximalen Laufzeit oder Reflexionsordnung wird das Teilchen-Verfahren verwendet (siehe Kapitel 9.1.3 "Menü Berechnung").

Mit dem kombinierten Verfahren kann die Berechnung komplexer Szenarien mit vielen abschirmenden Objekten, gegenüber der alleinigen Anwendung des Spiegelquellen-Verfahrens i.d.R. erheblich beschleunigt werden, ohne die Energiebeiträge höherer Reflexionsordnungen vollständig zu vernachlässigen.

Bei Verwendung des kombinierten Verfahrens „Spiegelquellen --> Teilchen“ wird der arbeitsplatzbezogene Emissions-Schalldruckpegel L_{pA} (dB) von Quellen, die einem Immissionspunkt zugeordnet wurden, im Immissionspunkt-Pegel berücksichtigt. In diesem Fall ist der Direktschall der referenzierten Quelle durch den Emissions-Schalldruckpegel bestimmt, während die Direktanteile anderer Quellen und die Anteile des Raumschalls aus der Strahlverfolgung resultieren.
Die Unterschiede zwischen den Berechnungsverfahren „Spiegelquellen“ (ohne Beugung, siehe Kapitel 7.2) und „Teilchen“ sind bei genügend hoher Teilchenzahl gering.

<table>
<thead>
<tr>
<th>Spiegelquellen</th>
<th>Teilchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordnung 0</td>
<td>Ordnung 0</td>
</tr>
<tr>
<td>Rasterabstand 1*1 m</td>
<td>Voxelabstand 111 m</td>
</tr>
<tr>
<td></td>
<td>Teilchenzahl 1 Millionen</td>
</tr>
<tr>
<td>(Standardeinstellung)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 1: Verfahrensvergleich „Spiegelquellen“ und „Teilchen“</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dateien\Handbuch\Kap 7_2\ Tabelle 1\Spiegelquellen - Reflex- Ordn 0.cni</td>
<td>Dateien\Handbuch\Kap 7_2\ Tabelle 1\Teilchenmodell 1 Mio - Reflex Ordnung 0.cni</td>
</tr>
<tr>
<td>Dateien\Handbuch\Kap 7_2\ Tabelle 1\Teilchenmodell 10 Mio - Reflex Ordnung 0.cni</td>
<td></td>
</tr>
</tbody>
</table>
Im Gegensatz zum Spiegelquellen-Modell ist es beim Teilchenmodell aus Gründen der Rechenzeit nicht sinnvoll, den Voxelabstand zu reduzieren, um qualitativ bessere Ergebnisse zu erzielen. Vielmehr ist eine ausreichend hohe Teilchenzahl für die Güte der Ergebnisse des Teilchenmodells entscheidend.

<table>
<thead>
<tr>
<th>Spiegelquellen</th>
<th>Teilchenmodell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordnung 0</td>
<td>Ordnung 0</td>
</tr>
<tr>
<td>Rasterabstand 0.2*0.2 m</td>
<td>Voxelabstand 111 m</td>
</tr>
<tr>
<td>Dateien\Handbuch\Kap 7_2\Tabelle 2\Spiegelquellen - Reflex Ordnung 0 - Raster 0.2x0.2 m.cni</td>
<td>Dateien\Handbuch\Kap 7_2\Tabelle 2\Teilchenmodell 1 Mio - Reflex Ordnung 0 - Voxel 1x1x1 m.cni</td>
</tr>
</tbody>
</table>
Tabelle 2: Verfahrensvergleich „Spiegelquellen“ und „Teilchen“ bei kleinerem Raster- bzw. Voxelabstand
Bei zu kleiner Teilchenzahl ist, mit zunehmendem Abstand von der Quelle, der örtliche Pegel nur noch von wenigen dort ankommenden Teilchen bestimmt und weist daher eine hohe statistische Unsicherheit auf. Zudem resultieren für geringe Teilchenzahlen - aufgrund der zufällig erzeugten Richtung, in die die Schallteilchen ausgesandt werden - bei wiederholter Berechnung jedesmal andere Pegelverteilungen.

<table>
<thead>
<tr>
<th>Teilchenmodell</th>
<th>Ordnung 0</th>
<th>Voxelabstand 111 m</th>
<th>Teilchenzahl 10.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dateien\Handbuch\Kap 7_2\Tabelle 3\Teilchenmodell 10000 - Reflex Ordnung 0 - Voxel 1x1x1 m.cni</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilchenmodell</th>
<th>Ordnung 0</th>
<th>Voxelabstand 111 m</th>
<th>Teilchenzahl 100.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dateien\Handbuch\Kap 7_2\Tabelle 3\Teilchenmodell 100000 - Reflex Ordnung 0 - Voxel 1x1x1 m.cni</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Teilchenmodell bei kleinen Teilchenzahlen

Der gleichartige Fall mit den Teilchenzahlen 1.000.000 und 10.000.000 wurde schon in Tabelle 1 behandelt, siehe dort.
7.2 Spiegelquellen

Beispiel

Gefundene abgeschirmte Strahlpfade um zwei Hindernisse (Hindernis 1 auf Boden, Hindernis 2 schwebend über Boden), wenn nur die Option „vertikale Beugung“ aktiviert ist (hier: 2 Pfade gefunden, nur der kürzeste Pfad bestimmt die Abschirmwirkung).
Gefundene abgeschirmte Strahlpfade um zwei Hindernisse (Hindernis 1 auf Boden, Hindernis 2 schwebend über Boden), wenn nur die Option „horizontale Beugung“ aktiviert ist (hier: 4 Pfade gefunden, nur der kürzeste Pfad bestimmt die Abschirmwirkung).

Gefundene abgeschirmte Strahlpfade um zwei Hindernisse (Hindernis 1 auf Boden, Hindernis 2 schwebend über Boden), wenn beide Optionen aktiviert sind (hier: 6 Pfade gefunden (rot: vertikal, blau: horizontal), nur der kürzeste Pfad bestimmt die Abschirmwirkung).
In jedem Falle bestimmt der Strahlweg mit dem geringsten Umweg gegenüber dem Direktstrahl die Abschirmwirkung der aktuellen Hindernisanordnung.

Das Spiegelquellen-Verfahren ist für beliebige Raumgrundrisse (d.h. auch für nicht-rechtwinklige) und beliebige Quell- und Hindernisorientierungen geeignet. Allerdings ist das Verfahren bei hohen Reflexionsordnungen sehr zeitaufwendig, da sehr viele Strahlwege geprüft und ggf. verworfen werden, falls diese nicht mit dem jeweiligen Immissions- oder Rasterpunkt zusammentreffen.

Zur Berechnung der verschiedenen Dämpfungsterme werden die Ansätze nach DIN ISO 9613-1 und -2 verwendet.

Die Bezeichnungen für die einzelnen Dämpfungsterme werden auch als Spaltenbezeichnungen innerhalb des Protokolls verwendet (siehe Kapitel 9.1.3.2).

Die geometrische Ausbreitungsdämpfung berechnet sich nach:

\[A_{div} = 10 \lg \left(\frac{4 \pi \frac{d^2}{d_0^2}}{d_0^2} \right) \ dB \]

mit
d: Abstand zwischen Quelle und Aufpunkt, in m
d_0 = 1 m

Die Dämpfung durch Luftabsorption berechnet sich nach:

\[A_{atm} = \alpha d / 1000 \ dB \]

mit
\(\alpha \): Absorptionskoeffizient der Luft nach DIN ISO 9613-1, in dB/km (Oktavmittenfrequenz)
d: Abstand zwischen Quelle und Aufpunkt, in m
Abschirmung

Das Abschirmmaß A_{bar} berechnet sich zu:

$$A_{\text{bar}} = D_Z = 10 \log \left[3 + \left(\frac{40}{\lambda} \right) C_3 z \right] \text{dB}$$

mit

$$C_3 = 1 \quad \text{bei Einfachbeugung}$$

$$C_3 = \frac{1 + \left(\frac{5 \lambda}{e} \right)^2}{\frac{1}{3} + \left(\frac{5 \lambda}{e} \right)^2} \quad \text{bei mehr als einer Schirmkante}$$

wobei

$$1 \leq C_3 \leq 3$$

Der Schirmwert z ergibt sich auf Basis des kürzesten Umwegs zu:

$$z = (d_{ss} + d_{sr} + e) - d$$

mit

d_{ss}: Abstand zwischen Quelle und erster Schirmkante
d_{sr}: Abstand zwischen letzter Schirmkante und Aufpunkt
e: Abstand zwischen erster und letzter Schirmkante
d: Abstand zwischen Quelle und Aufpunkt
Der Reflexionsverlust RV_i in dB für eine Reflexion an Reflektor i ergibt sich aus dem Absorptionsgrad α_i gemäß:

$$RV_i = -10 \log(1 - \alpha_i) \text{ dB}$$

Für n Reflexionen folgt der Gesamt-Reflexionsverlust RV aus:

$$RV = \sum_{i=1}^{n} RV_i$$
Reflexionsordnung: Die eingestellte Reflexionsordnung bestimmt bei gegebener Objektanordnung (Quellen und Hindernisse) die Rechenzeit. Die im Sinne einer möglichst kurzen Rechenzeit einzustellende Reflexionsordnung hängt insbesondere von den absorbierenden Eigenschaften des Raumes ab: Je höher der mittlere Absorptionsgrad der Raumbegrenzungsf lächen ist, desto niedriger kann die maximale Reflexionsordnung eingestellt werden, um einen konstanten Endpegel zu erreichen. Im Extremfall bei hochabsorbierenden Raumbegrenzungsf lächen (Alpha=1) wird schon bei der Reflexionsordnung 0 (nur Direktschall) der Endpegel erreicht.

<table>
<thead>
<tr>
<th>Pegel in mittelabsorbierendem Raum (Alpha_mittel = 0.5)</th>
<th>Pegel im schallharter Raum (Alpha_mittel = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td> ... bis zur 5.Reflexionsordnung</td>
<td> ... bis zur 5.Reflexionsordnung</td>
</tr>
<tr>
<td> ... bis zur 10.Reflexionsordnung</td>
<td> ... bis zur 10.Reflexionsordnung</td>
</tr>
</tbody>
</table>
Abschirmung (vertikale/horizontale Beugung): In der Standardeinstellung sind beide Optionen aktiviert, so dass sowohl die vertikale, als auch die horizontale Ebene zur Ermittlung des kürzesten Umwegs untersucht wird. Diese Einstellung sollte für die üblichen Hindernisanordnungen beibehalten werden und führt im Regelfall zu akzeptablen Rechenzeiten.

Kapitel 7 - Berechnungsverfahren
7.2 Spiegelquellen
7.3 Berechnung nach VDI 3760

Die Schallausbreitungskurve nach VDI 3760\(^1\) wird für einen diagonalen Pfad im Raum berechnet. In Cadna\(R\) beginnt dieser Pfad standardmäßig in der linken unteren Ecke im Abstand von 1.5 Metern in allen drei Richtungen von den Raumwänden (Quellkoordinate \((x,y,z) = (1,5; 1,5; 1,5)\) m) und endet in der rechten oberen Raumcke. Die Pegelberechnung erfolgt an den Stützpunkten einer vorgegebenen Abstandsreihe.

Die zur Raumbeurteilung erforderlichen Kenngrößen DL\(f\) (Pegelüberhöhung gegenüber der Freifeldausbreitung in dB) und DL\(2\) (Pegelabnahme pro Abstandsverdopplung in dB) nach VDI 3760 werden sowohl für die Frequenzbänder wie auch für den Gesamtpegel eines vorgebaren Referenzspektrums berechnet. Dadurch kann überprüft werden, ob die Anforderung der UVVLärm im Hinblick auf die Pegelminderung bei Abstandverdopplung von 4 dB in den Oktaven 500, 1000, 2000 und 4000 Hz eingehalten ist.

Bei Berechnung nach VDI 3760 können keine Strahlen zu den Immissionspunkten angezeigt werden (siehe Kapitel 5.9, Option "Generiere Strahlen (als Hilfspolygone")"), da dieses Berechnungsverfahren nicht auf der Strahlerzeugung im Raum basiert.

\(^1\) VDI 3760:1996-02, Berechnung und Messung der Schallausbreitung in Arbeitsräumen, siehe http://www.beuth.de
Berechnung

Streukörperdichte

\[q = \frac{S_s}{4V} = \frac{1}{l_m} \]

mit

- \(S_s \): Gesamtoberfläche der Streukörper [m²]
- \(V \): Raumvolumen [m³]
- \(l_m \): mittlere freie Weglänge [m]

Die Streukörperdichte hat vorwiegend bei großen Abständen (> 20 m) einen Einfluss auf die Schallausbreitung. Daher werden die auf den mittleren Abstandsbereich (5 m < r <= 16 m) bezogenen Kennwerte DLf und DL2 nur in geringem Maße beeinflusst.

Energiedichte Direktschall

Energiedichte des durch Streuung geminderten Direktschalls:

\[E_d(r) = \frac{P}{4\pi r^2} e^{-(q+m)r} \]

mit

- \(P \): Schallleistung der Quelle [W]
- \(q \): Streukörperquerschnitt [1/m]
- \(c \): Schallgeschwindigkeit [m/s]
- \(r \): Abstand Quelle-Aufpunkt [m]
- \(m \): Dämpfungskonstante der Luft [-],

wobei \(m * 10^3 = \frac{\alpha_L}{10 \lg e} \) mit \(\alpha_L \): Luftdämpfungskoeffizient nach ISO 9613-1 in dB/km

Energiedichte Streuschall

Energiedichte des Streuschalls:

\[E_s(r) = \frac{3qP}{4\pi cr} e^{-r\sqrt{3qa}} \]

mit
\[a = b + \alpha'_s \, q + m \]

Darin ist \(\alpha'_s \) der mittlere Schallabsorptionsexponent der Streukörper:

\[\alpha'_s = -\ln(1 - \alpha_s) \]

mit \(\alpha_s \): mittlerer Schallabsorptionsgrad der Streukörper

Der Parameter \(b \) beschreibt die Energieverluste durch Absorption an Decke und Boden des Raumes.

\[b = b(\alpha_{Boden}) + b(\alpha_{Decke}) \]

Er berechnet sich in Abhängigkeit von der Raumhöhe \(H \) - jeweils für Decke und Boden - nach:

- \(qH < 1 \):
 \[b(\alpha_i) = -q \ln\left\{ qH \left(1 - \frac{\alpha_i}{4} \right) + \left(1 - \frac{\alpha_i}{2} \right) \frac{2}{\alpha'} \left[-\frac{\alpha'}{2} \left(\frac{1}{qH} - 1 \right) \right] \right\} \]

- \(qH \geq 1 \):
 \[b(\alpha_i) = -q \ln\left(1 - \frac{\alpha_i}{4qH} \right) \]

mit \(\alpha' \): mittlerer Schallabsorptionsexponent Boden-Decke

Diese Ansätze gelten für den seitlich (in der xy-Ebene) unendlich ausgedehnten Raum.

Zur Ermittlung der Energiedichte im seitlich endlich ausgedehnten Raum wird dieser an den Raumbegrenzungsflächen bis zur eingestellten Ordnung gespiegelt, um die Lage der Spiegelschallquellen zu bestimmen. Aus diesen Ortskoordinaten werden der Abstand und die vom Strahl geschnittenen Raumbegrenzungsflächen mit den Reflexionsgraden \(\rho_{nx}, \rho_{ny}, \rho_{nz} \) ermittelt.
• für den durch Streuung verminderten Direktschall:

\[E_d = \sum_{nx=-\infty}^{\infty} \sum_{ny=-\infty}^{\infty} \sum_{nz=-\infty}^{\infty} \rho_{nx} \rho_{ny} \rho_{nz} \cdot E_d(r) \]

• für den durch Streuschall aller Spiegelquellen:

\[E_s = \sum_{nx=-\infty}^{\infty} \sum_{ny=-\infty}^{\infty} \rho_{nx} \rho_{ny} \cdot E_s(r) \]

• Summe:

\[E_{ges} = E_d + E_s \]

oder in Pegelschreibweise für den Differenzpegel \(L_p - L_w \):

\[L_p - L_w = 10 \log \left(\frac{c \cdot E_{ges} \cdot r_0^2}{P} \right) \text{ dB mit } r_0 = 1 \text{ m} \]

Im Verfahren nach VDI 3760 stellen die Raumbegrenzungsflächen die einzigen zu berücksichtigenden Reflektoren dar. Vorhandene Hindernisse (wie Quaderquelle, Hindernisquader oder Schirm) verursachen bei diesem Berechnungsverfahren keine abschirmende Wirkung.

Schallpegelverteilung

Die so ermittelte Schallausbreitungskurve wird zur Berechnung der Schallpegelverteilung im Raum verwendet, indem der Schallleistungspegel jeder Quelle ortsabhängig um den SAK-Pegelabfall gemindert und diese Beiträge im Raster energetisch aufsummiert werden. Dabei werden Linien- und Flächenquellen in Abhängigkeit vom Abstand des Immissions- oder Rasterpunktes segmentiert und durch Ersatzquellen beschrieben.
7.4 Diffusfeld-Verfahren

Das klassische Verfahren zur Berechnung des Schallpegels in Räumen geht auf die Arbeiten von W.C. Sabine zurück. Im Rahmen der statistischen Nachhall-Theorie wird das Schallfeld als vollkommen diffus angenommen. In diesem Fall ist der sich im Diffusfeld einer Schallquelle einstellende Pegel ortsunabhängig. Die Pegelermittlung basiert nur auf den Quellparametern (Schallleistung) und den auf den Raumbegrenzungsflächen verteilten Absorptionsflächen.

Bei statistischer Berechnung können keine Strahlen zu Immissionspunkten angezeigt werden (siehe Kapitel 5.9, Option "Generiere Strahlen (als Hilfspolygone)").

Mittlerer Absorptionsgrad je Raumbegrenzungsfläche:

\[
\alpha_m = \frac{\sum_{i=1}^{n} \alpha_i \cdot S_i}{S} \quad \text{mit} \quad S = \sum S_i
\]

wobei \(S_i\): Fläche von Teilfläche i

Terz-Oktavumwandlung des Absorptionsgrades:

\[
\alpha_{Okt} = \frac{3}{\alpha_{Terz,1}^{-1} + \alpha_{Terz,2}^{-1} + \alpha_{Terz,3}^{-1}}
\]

Mittlerer Absorptionsgrad im Raum:

\[
\alpha_{m,Raum} = \frac{\sum_{k=1}^{6} \alpha_{m,k} \cdot S_k}{S_{tot}} \quad \text{mit} \quad S_{tot} = \sum S_k
\]
effektiver Absorptionsgrad

Der effektive Absorptionsgrad je Raumbegrenzungsfläche bezieht sich auf die Oktavwerte $L_{ref,j}$ des gewählten Referenzspektrums (siehe Kapitel 9.1.3.1 "Konfiguration"):

\[
\alpha_{eff,j} = \frac{\alpha_j \cdot 10^{L_{ref,j}/10}}{10^{L_{ref,j}/10}}
\]

Effektiver Absorptiongrad des Raums mit Gesamtoberfläche S_{ges}:

\[
\alpha_{eff,Raum,j} = \frac{\sum_{k=1}^{6} \alpha_{k,j} \cdot 10^{L_{ref,j}/10} \cdot S_k}{S_{tot}}
\]

Äquivalente Absorptionsfläche

\[
A = \alpha_{m,Raum} \cdot S_{tot}
\]

Schalldruckpegel im Abstand r:

\[
L_p = L_W + 10 \log \left(\frac{4}{A} + \frac{1}{4\pi r^2} \right) \text{dB}
\]

mit

- L_W: Schallleistungspegel in dB
- A: äquivalente Absorptionsfläche des Raumes (m²)
- r: Abstand Quelle - Aufpunkt (m)

Im Diagramm wird der Differenzpegel $L_p - L_W$ angezeigt:

\[
L_p - L_W = 10 \log \left(\frac{4}{A} + \frac{1}{4\pi r^2} \right) \text{dB}
\]
• nach *Sabine*:

\[
T = 0.163 \frac{V}{S \alpha + 4mV} \quad \text{mit Luftabsorption}
\]

\[
T = 0.163 \frac{V}{S \alpha} \quad \text{ohne Luftabsorption}
\]

• nach *Eyring*:

\[
T = 0.163 \cdot \frac{V}{4mV - S \ln(1 - \bar{\alpha})}
\]

mit
- \(S\): Gesamt-Oberfläche des Raumes (m²)
- \(V\): Raumvolumen (m³)
- \(m\): frequenzabhängige Dämpfungskonstante für Temperatur & relative Feuchte

und

\[
\bar{\alpha} = \frac{1}{S} \sum \alpha_i S_i
\]
Kapitel 7 - Berechnungsverfahren
7.4 Diffusfeld-Verfahren
7.5 Raumakustische Gütemaße

In CadnaR werden die nachfolgend aufgeführten raumakustischen Gütemaße aus den rückwärtss-integrierten Echogrammen berechnet.

1. T30 (Nachhallzeit aus 30 dB Pegelabfall): lineare Regression von -5 bis -35 dB (nach Methode der kleinsten Quadrate)

 Beispiel: Abklingkurve für 500 Hz-Oktave mit Regressionsgerade für Nachhallzeit T30 (500 Hz)

2. T20 (Nachhallzeit aus 20 dB Pegelabfall): lineare Regression von -5 bis -25 dB (nach Methode der kleinsten Quadrate)

 Beispiel: Abklingkurve für 500 Hz-Oktave mit Regressionsgerade für Nachhallzeit T20 (500 Hz)
3. T10 (Nachhallzeit aus 10 dB Pegelabfall): lineare Regression von -5 bis -15 dB (nach Methode der kleinsten Quadrate)

![Diagram](image1.png)

Beispiel: Abklingkurve für 500 Hz-Oktave
mit Regressionsgerade für Nachhallzeit T10 (500 Hz)

4. EDT (Anfangsnachhallzeit/Early Decay Time): lineare Regression von 0 bis -10 dB (nach Methode der kleinsten Quadrate)

![Diagram](image2.png)

Beispiel: Abklingkurve für 500 Hz-Oktave
mit Regressionsgerade für Early Decay Time EDT (500 Hz)

Alle vier vorausstehenden Gütemaße werden aus der Neigung der Abklingkurven ermittelt. Für jede o.g. Größe ist angegeben, auf Basis welchen Pegelbereichs der Abklingkurve die Regressionsbildung erfolgt.
5. D50 (Deutlichkeitsgrad od. Deutlichkeit / Definition od. Clarity, für Sprache):

\[D_{50} = \frac{W_{0.50 \text{ms}}}{W_{\text{ges}}} \quad [-] \]

Dabei bezeichnet \(W \) - wie in allen weiteren Formeln - die Schallenergie.

Der Nullpunkt bei 0 ms entspricht dem Zeitpunkt des Abschaltens der Quelle, d.h. dieses und die weiteren Energiemaße enthalten den Direktschallanteil.

6. C50 (Deutlichkeitsmaß / Clarity Index, für Sprache):

\[C_{50} = 10 \log \frac{W_{0.50 \text{ms}}}{W_{50 \text{ms}..\infty}} \quad [\text{dB}] \]

7. C80 (Klarheitsmaß / Clarity Index, für Musik):

\[C_{80} = 10 \log \frac{W_{0.80 \text{ms}}}{W_{80 \text{ms}..\infty}} \quad [\text{dB}] \]

8. TS (Schwerpunktzeit / Center Time oder Center of Gravity Time, für Sprache):

\[TS = \frac{1}{W_{\text{ges}}} \int_{t=0}^{\infty} t \ast W(t) \, dt \quad [\text{s}] \]

9. ALcons (Artikulationsverlust von Konsonanten/Articulation Loss of Consonants, für Sprache):

\[AL_{\text{cons}} \approx 0.652 \ast \frac{W_{0..\infty} - W_{0.35 \text{ms}}}{W_{0.35 \text{ms}}} \ast T_{30} \quad [%] \]
Die Definition basiert auf den Echogrammen und Abklingkurven, berücksichtigt aber keinen Störpegel. ALcons% wird i.A. nicht frequenzabhängig angegeben. In CadnaR werden folgende Werte ausgegeben:

- ALcons_2k (2000 Hz)
- ALcons_500_2k (Mittelwert aus Oktaven 500, 1000, 2000 Hz)

10. STI (nach IEC 60268-16:2011)

Aus der Berechnung resultieren zwei Werte:

- STI_male
- STI_female

11. STIPA nach IEC 60268-16:2011 (Speech Transmission Index for Public Address Systems)

12. CIS (Allgemeine Verständlichkeitsskala/Common Intelligibility Scale nach Barnett):

 CIS ergibt sich aus STIPA gemäß:

 \[CIS = 1 + \log(STIPA) \]

 Die o.g. Umrechnung gilt nur für STIPA>0.126.
Aus der Literatur [z.B. 1, 2, 3, 4] können nachfolgende anzustrebende Wertebereiche für die genannten raumakustischen Gütemaße zitiert werden:

<table>
<thead>
<tr>
<th>Gütemaß</th>
<th>Freq.bereich</th>
<th>Optimum für Sprache</th>
<th>... für Musik</th>
</tr>
</thead>
<tbody>
<tr>
<td>T30</td>
<td>500-1000 Hz</td>
<td>ca. 1 s *)</td>
<td>ca. 1,5 s *)</td>
</tr>
<tr>
<td>T20</td>
<td>500-1000 Hz</td>
<td>-</td>
<td>ca. 2,2 s *)</td>
</tr>
<tr>
<td>T10</td>
<td>500-1000 Hz</td>
<td>> 0.5</td>
<td>-</td>
</tr>
<tr>
<td>EDT</td>
<td>500-1000 Hz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D50</td>
<td>500-1000 Hz</td>
<td>> 0 dB</td>
<td>-</td>
</tr>
<tr>
<td>C50</td>
<td>500-1000 Hz</td>
<td>-</td>
<td>-1 bis +3 dB</td>
</tr>
<tr>
<td>C80</td>
<td>500-1000 Hz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TS</td>
<td>500-1000 Hz</td>
<td>< 80 ms</td>
<td>100-150 ms</td>
</tr>
<tr>
<td>ALcons_2k</td>
<td>2000 Hz</td>
<td><=12%</td>
<td>-</td>
</tr>
<tr>
<td>ALcons_500_2k</td>
<td>500-2000 Hz</td>
<td>3.8% gute V.</td>
<td>-</td>
</tr>
<tr>
<td>STI_male</td>
<td>125-8000 Hz</td>
<td>>=0,5</td>
<td>-</td>
</tr>
<tr>
<td>STI_female</td>
<td>250-8000 Hz</td>
<td>0.45...0.6 schwache S.</td>
<td>-</td>
</tr>
<tr>
<td>STIPA</td>
<td>125-8000 Hz</td>
<td>siehe STI</td>
<td>-</td>
</tr>
<tr>
<td>CIS</td>
<td>125-8000 Hz</td>
<td>>= 0,7 (STI>=0,5)</td>
<td>-</td>
</tr>
</tbody>
</table>

*) abhängig von Raumvolumen V und Raumnutzung (o.g. Werte gelten für V=ca. 1000 m³)

Kapitel 7 - Berechnungsverfahren
7.5 Raumakustische Gütemaße
Dieses Kapitel behandelt die in CadnaR verfügbaren Funktionen zur Projekt- und Datenorganisation. Dazu gehören:

- die Definition von Gruppen von Objekten (siehe Kapitel 8.1 und 8.1.1),
- der CadnaR-spezifische ObjectTree zur programm-unterstützten Gruppenerzeugung (siehe Kapitel 8.1.2) und
- die Verwendung von Varianten auf Basis von Gruppen (siehe Kapitel 8.2).
8.1 Gruppen

Wenn bestimmte Regeln bei der Definition des ID eingehalten werden, so kann ein Projekt mit dem zugrundeliegenden Datenbestand jederzeit durch zusätzliche Eingaben erweitert werden, ohne dass sich Probleme mit der eindeutigen Identifizierung von Einzelquellen oder der Gruppenbildung ergeben.

Eine Gruppe ist eine gewünschte Auswahl von Objekten, die mit einer Bezeichnung versehen werden kann. Die Zugehörigkeit von Objekten zu einer Gruppe wird durch die Zeichenkette im Feld „Muster“ bestimmt, die sich auf den ID der zugehörigen Objekte bezieht.

Folgende Möglichkeiten bestehen bei der Verwendung von Gruppen:

- Objekte einer Gruppe zur Berechnung deaktivieren oder aktivieren (z.B. im Rahmen der Berechnung von Varianten),
- Teilsummenpegel der Gruppen an Immissionsorten ausgeben,
- Teilpegel jeder Einzelquelle einer Gruppe ausgeben (z.B. um die Prioritätenreihenfolge von Lärmminderungsmaßnahmen festzulegen),
- Objekte einer Gruppen mit verschiedenen Aktionen verändern (z.B. löschen, transformieren).
8.1.1 Gruppendefinition

In diesem Kapitel wird die manuelle Gruppenbildung behandelt. Alternativ kann die Gruppenbildung auch durch Anwendung des ObjectTree erfolgen (siehe Kapitel 8.1.2).

Bei der Bildung der Muster-Zeichenfolge können Platzhalterzeichen („Wildcards“) verwendet werden (siehe Kapitel 9.1.7.3).

Es werden zwei Quellen mit folgenden IDs betrachtet:

Quelle 1: ID = Masch_101
Quelle 2: ID = Masch_102

<table>
<thead>
<tr>
<th>Muster</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masch*</td>
<td>Quelle 1 und Quelle 2 wird der Gruppe zugeordnet</td>
</tr>
<tr>
<td>Masch_??2</td>
<td>Quelle 2 wird der Gruppe zugeordnet</td>
</tr>
<tr>
<td>Masch_101</td>
<td>Masch_102</td>
</tr>
<tr>
<td>*2</td>
<td>nur die Quelle 2 wird der Gruppe zugeordnet</td>
</tr>
</tbody>
</table>

Bei umfangreichen Projekten sollte die ID-Bildung unter Berücksichtigung des vorgesehenen Gruppenkonzepts festgelegt werden.
Kapitel 8 - Projektorganisation

8.1.1 Gruppendefinition

Beispiel für die Gruppenhierarchie und deren Teilsummenpegel

Die Reihenfolge und die Zusammenstellung der Gruppen in der Gruppenliste wirkt sich auf die Ergebnisse der Teilsummenpegel an den aktiven Immissionsorten aus, die in der Gruppenliste angezeigt werden.

Dabei ist zu beachten, dass nur Objekte durch eine Gruppenbildung manipuliert werden können, deren ID im Objektdialog neutral (grau) geschaltet ist, also weder aktiviert, noch deaktiviert sind (siehe Kapitel 5.1). Objekte, die ausdrücklich aktiviert oder deaktiviert wurden, können durch eine Gruppenbildung nicht deaktiviert bzw. aktiviert werden.

Im obigen Beispiel sind 6 Gruppen gebildet:

- Die erste Gruppe schließt alle Maschinen ein.
- Die zweite Gruppe schließt nur die Quellen der Maschinengruppe 1 ein.
- Die dritte Gruppe schließt nur schließt nur die Quellen der Maschinengruppe 2 ein.
- Die vierte Gruppe schließt die Maschinen 1 und 2 ein.
- Die fünfte Gruppe beinhaltet nur die Maschine 1.
- Die sechste Gruppe schließt jeweils die Maschine 2 der Maschinengruppen 1 und 2 ein.

Würde nun die erste Gruppe „alle Maschinen“, die alle Quellen beinhaltet, für eine Berechnung durch Eintrag eines Minus-Zeichens in der Spalte „Variante V01“ deaktiviert, so würde keine der nachfolgenden Gruppen in diese Berechnung mehr einbezogen werden, da alle nachfolgenden Gruppen ein Teilmengen der deaktivierten Gruppe „alle Maschinen“ darstellen.

Gruppe mit Muster „Masch*“ deaktiviert, alle hierarchisch nachfolgenden Gruppen werden automatisch deaktiviert

Zunächst wird der Ausgangszustand wieder hergestellt:

• Ändern Sie den Eintrag des Minus-Zeichens für die Gruppe mit dem Muster „Masch*“ wieder, indem Sie ein Leerzeichen in die Spalte „Variante V01“ eingeben.

• Schließen Sie die Tabelle Gruppen und starten Sie die Punktberechnung durch Klick auf das Taschenrechner-Symbol .
• Deaktivieren Sie jetzt die Gruppe mit dem Muster “Masch_101|Masch_102“.
• Schließen Sie die Tabelle **Gruppen** und starten Sie die Berechnung.
• Öffnen Sie erneut die Tabelle **Gruppen**.

Die nachfolgende Gruppe mit der Bezeichnung „nur Maschine 1“ wurde automatisch deaktiviert, da deren Muster eine Untermenge der vorausgehenden Gruppe mit der Bezeichnung „nur Maschinen 1 und 2“ darstellt.

Gruppe „nur Maschine 1“ ohne Teilpegel, da vorstehende Gruppe deaktiviert, die diese Gruppe logisch einschließt.

Die einzige Möglichkeit zur Aktivierung der Gruppe besteht in diesem Fall darin, diese an die erste Stelle der Gruppentabelle zu verschieben und diese mit einem Plus-Zeichen zu aktivieren (oder die Quelle direkt über deren Objektdialog zu aktivieren).

Dateien/Handbuch/Kap_8_1/Gruppen_4.cni
8.1.2 ObjectTree

Der ObjectTree (Menü Tabellen|ObjectTree) ermöglicht, die Objekte eines Projektes einer hierarchisch gegliederten Gruppenstruktur zuzuordnen.

Dialog ObjectTree|Definition

Die ObjectTree-Symbolleiste enthält nachfolgende Symbole:

- ![Symbol](image1.png) **Objekt-Eigenschaften editieren**
- ![Symbol](image2.png) **Objekt löschen**
- ![Symbol](image3.png) **Objekt positionieren**
- ![Symbol](image4.png) **Objektgruppe einfügen**
- ![Symbol](image5.png) **Zelle kopieren**
- ![Symbol](image6.png) **Zelle einfügen**
- ![Symbol](image7.png) **Objekte importieren**
- ![Symbol](image8.png) **Objekte anzeigen Ein/Aus**
- ![Symbol](image9.png) **ObjectTree-Struktur aufklappen**
- ![Symbol](image10.png) **ObjectTree-Struktur schließen**
Objekte positionieren

Es bestehen zwei Möglichkeiten einzelne Objekte oder Objekt-Gruppen innerhalb der ObjectTree-Hierarchie zu positionieren:

1. mit den Positionierpfeilen oder
2. per Drag & Drop mit der Maus.

Mit den Positionierungspfeilen in der Symbolleiste kann das aktive Objekt auf eine andere Hierarchieebene verschoben werden.

- Zelle in der Zellenliste nach oben verschieben
- Zelle in der Zellenliste nach unten verschieben
- Zelle in der Zellenliste um eine Ebene nach oben verschieben
- Zelle in der Zellenliste um eine Ebene nach unten verschieben

Alternativ können einzelne Objekte oder eine Gruppe mit der Maus innerhalb des ObjectTree verschoben oder kopiert werden.

- Objekt/Gruppe verschieben: Klicken Sie mit der linken Maustaste auf das Objekt oder die Gruppe, das/die verschoben werden soll und halten Sie die Taste gedrückt. Ziehen Sie das Objekt oder die Gruppe an die neue Position innerhalb des ObjectTree und lassen Sie die linke Maustaste los. Daraufhin wird das Objekt bzw. die Gruppe am neuen Ort eingefügt.
Objekt/Gruppe kopieren/einfügen: Klicken Sie mit der rechten Maustaste auf das Objekt oder die Gruppe, das/die kopiert werden soll und halten Sie die Taste gedrückt. Ziehen Sie das Objekt oder die Gruppe an die neue Position innerhalb des ObjectTree, an der die Kopie erscheinen soll. Nach Loslassen der rechten Maustaste wird ein Dialog angezeigt, der sowohl das Ausschneiden („Cut from“), als auch das Kopieren („Copy from“) gestattet. Zudem wird die Ausgangs- und die Endgruppe angezeigt. Falls Kopieren („Copy from“) gewählt ist, können die kopierten Objekte transformiert werden (siehe Kapitel 6.2.11 "Transformation").

Gruppe anzeigen: Falls der Befehl **Gruppen anzeigen** im Menü **Eigenschaften** aktiviert ist, werden alle im Dialog **ObjectTree** angelegten Gruppen und Untergruppen mit einem Rahmen in 2D angezeigt (weitere Funktionen siehe Abschnitt "ObjectTree-Gruppen anzeigen & verändern" weiter unten).
ObjectTree-Symbolleiste

Bei Anklicken dieses Symbols wird das aktivierten Objekt nach Bestätigung der Sicherheitsabfrage aus dem ObjectTree gelöscht. Diese Funktion kann alternativ durch Drücken der Taste ENTF ausgelöst werden.

> Wird ein ObjectTree-Ordner gelöscht, so werden auch alle darin befindlichen Objekte gelöscht.

Nach Anklicken dieses Symbols wird ein neues Unterverzeichnis auf der Ebene des aktiven Objekts in den ObjectTree eingefügt.

Nach Anklicken dieses Symbols wird das im ObjectTree aktuell gewählte Objekt kopiert und kann anschließend an anderer Stelle eingefügt werden. Wird ein Ordner aus dem ObjectTree kopiert so enthält die Kopie alle darin befindlichen Objekte.

Wurden Objekte unter Verwendung des Befehls **Zelle kopieren** kopiert, so können diese an einer beliebigen anderen Stelle eingefügt werden.

Um zum Beispiel eine Kopie der Gruppe A in die Root einzufügen, kopieren Sie die Gruppe A, aktivieren Sie die „Root“ mit einem Mausklick und klicken Sie auf das Symbol „Zelle einfügen“. Dabei wird ein Dialog geöffnet, der es gestattet, die kopierte Objekte an einen neuen Ort zu transformieren (siehe Kapitel 6.2.11).

> Die Transformation über den Dialog **ObjectTree|Paste** ist z.Z. auf rein translatorische Verschiebungen beschränkt.

Bei Anklicken dieses Symbols wird die Struktur des ObjectTree mit allen Unterverzeichnissen vollständig aufgeklappt. In dieser Einstellung sind alle Objekte in allen Gruppen sichtbar.

Der letzte Zustand der angezeigten ObjectTree-Struktur wird in der CadnaR-Datei gespeichert und steht daher nach erneutem Öffnen direkt zur Verfügung.

ObjectTree-Gruppen anzeigen & verändern

Mit dieser Funktion können komplexe Szenarien schnell und mit vergleichsweise geringem Aufwand erstellt und editiert werden. So kann, zum Beispiel, eine Anordnung von Schreibtischen oder anderen Möbeln, die sich mehrfach in einem Großraumbüro befinden, als Gruppe grafisch dupliziert und verschoben werden, ohne dass diese Objekte händisch neu eingegeben oder editiert werden müssen. Außer der Geometrie weisen die Duplikate dieselben Eigenschaften wie die Originale auf.

Gruppen, die manuell über die Tabelle Gruppe (siehe Kapitel 8.1.1) angelegt wurden, können nicht in der 2D- bzw. in der 3D-Ansicht umrahmt angezeigt und auch nicht als Gruppe verändert werden.

Die Gruppe mit zwei Hindernisquadern wurde in der 2D-Ansicht ausgewählt (selektiert).

Bei gleichzeitig geöffneter 3D-Ansicht wird die in 2D markierte Gruppe auch in der 3D-Ansicht hervorgehoben.
Standardmäßig werden Gruppen in 2D nicht angezeigt. Um diese anzuzeigen, wählen Sie den Befehl **Gruppen anzeigen** im Menü **Eigenschaften** aus.

Daraufhin werden alle im Dialog **ObjectTree** angelegten Gruppen und Untergruppen mit einem Rahmen entsprechend der gewählten Darstellungsart für die Objektart „Gruppen“ angezeigt (standardmäßig als gestricheltes grünes Polygon, siehe Abschnitt "Darstellung editieren", weiter unten).

Im Dialog **3D-Ansicht**, Menü **Darstellung|Darstellung von ObjectTree-Gruppen** stehen drei verschiedene Anzeigeoptionen zur Verfügung (siehe Kapitel 9.1.4.1):

- **aus**: keine Darstellung der ObjectTree-Gruppen
- **selektiert**: Nur die ausgewählte ObjectTree-Gruppe wird angezeigt.
- **alle**: Es werden alle vorhandenen ObjectTree-Gruppen angezeigt.

Falls der Befehl **Gruppen anzeigen** im Menü **Eigenschaften** aktiviert ist, können Gruppen nicht nur über den Dialog **ObjectTree**, sondern auch in der 2D-Ansicht selektiert werden (siehe oben).
Kapitel 8 - Projektorganisation

8.1.2 ObjectTree

Im Nachfolgenden wird jeweils zwischen den Vorgehensweisen in der 2D- und in der 3D-Ansicht unterschieden.

Die Funktionen stimmen mit denen für Einzelobjekte überein (siehe Kapitel 4 - Objekte bearbeiten), werden aber dennoch erläutert.

- **ObjectTree-Gruppen auswählen**: Bei aktiviertem Befehl **Gruppen anzeigen** (Menü **Eigenschaften**, siehe oben) werden im Dialog **ObjectTree|Definition** markierte Gruppen werden in 2D und 3D als selektiert angezeigt.

- **ObjectTree-Gruppen verschieben/drehen**: Verschieben mit Maus und Tastatur bei gedrückter STRG-Taste in 2D & 3D (Tasten für Richtungen xyz: Pfeiltasten & Bild auf/ab), Drehen in 2D mit der Maus bei gedrückter ALT-Taste:

| Verschieben einer Gruppe (entweder mit der Maus oder über die Tastatur) | Drehen einer Gruppe mit der Maus, bei gedrückter ALT-Taste |
- **ObjectTree-Gruppen in 2D kopieren/duplizieren**: Kopieren/Duplizieren in 2D per Maus mit gedrückter STRG-Taste

 Gruppe mit Maus markieren, STRG-Taste gedrückt halten, Gruppe verschieben, rechte Maustaste loslassen

 Originalgruppe + Duplikat der Gruppe

Nach Duplizierung der Gruppe wird einen zweite Gruppe im Dialog **ObjectTree|Definition** angezeigt, die die Duplikate enthält:

- **ObjectTree-Gruppen in 2D/3D löschen**: Das Löschen einer selektierten Gruppe löscht - wie bisher im Dialog **ObjectTree** - den ganzen markierten Teilbaum (nach Sicherheitsabfrage).
Die grafische Darstellung der ObjectTree-Gruppen kann im Menü **Eigenschaften|Darstellung** für Objektart "Gruppe" editiert werden (siehe Kapitel 9.1.4.6).

Bei Auswahl des Kontextmenü-Befehls **Objekte verändern** für eine ObjectTree-Gruppe in der 2D-Ansicht wird „Aktivierung“ die selektierte ObjectTree-Gruppe ausgewählt und gleichzeitig alle Bereiche (d.h. "innerhalb", "außerhalb" und "auf dem Rand").
8.1.3 Teilpegellisten

Die Teilpegel aller zu einer Gruppe gehörenden Quellen an allen aktiven Immissionsorten können angezeigt werden. Gehen Sie dazu wie folgt vor:

- Öffnen Sie die Tabelle **Gruppen** im Menü **Tabellen**.
- Doppelklicken Sie auf die Zeile der Gruppe deren quellenbezogene Teilpegel Sie anzeigen möchten.

Daraufhin wird der zugehörige Dialog **Gruppe** geöffnet.

Dialog **Gruppe** der Gruppe „Maschinengruppe 1“

- Klicken Sie auf die Schaltfläche „Teilpegel“, um die quellenbezogenen A-bewerteten Teilpegel anzuzeigen.

Teilpegel der zur Gruppe „Maschinengruppe 1“ gehörenden Quellen
Im Gegensatz dazu enthält die Tabelle Teilpegel im Menü Tabellen die Teilpegel von allen Quellen verursachten Schallpegel an allen aktiven Missionsorten, sowohl für den A-bewerteten Pegel, als auch in Oktavbandbreite.

Tabelle Teilpegel (aus dem Menü Tabellen)
8.2 Varianten

Mit Hilfe von Varianten kann unter Bezugnahme auf die Gruppenstruktur sehr einfach zwischen verschiedenen Projektzuständen umgeschaltet werden. Die dabei verwendeten Gruppen können dabei aus nutzer-eigenen Definitionen (über Menü Tabellen|Gruppe) oder aus Definition innerhalb des ObjectTree (über Menü Tabellen|ObjectTree|Definition) stammen.

Bietet schon die Gruppenbildung (siehe Kapitel 8.1) eine extrem flexible Logik zum Umschalten zwischen verschiedenen Projektzuständen, so ergibt die Einbeziehung dieser Gruppenstruktur in die Variantenverwaltung (Menü Tabellen|Variante) eine nochmals gesteigerte Effizienz bei der Projektbearbeitung.

Dialog Varianten

Es stehen bis zu 16 Varianten in einer Datei zur Verfügung. Wählen Sie die gewünschte Variante aus der Liste durch einen Mausklick aus.

Ist diese Option für eine Variante aktiviert, so steht diese im Listenfeld für Varianten im CadnaR-Hauptfenster und als Spalte innerhalb der Tabelle Gruppen zur Verfügung.

Nach Klick auf kann das Info-Fenster keine weiteren Text aufnehmen. Es wird der Berechnungszeitpunkt der jeweiligen Variante angezeigt.
Zur Erläuterung wird die Datei einer Werkhalle verwendet.

- Öffnen Sie den Dialog **Variante** über das Menü **Tabellen**.

In diesem Beispiel wurden folgende Varianten angelegt:
- V01 (alle Quellen aktiv)
- V02 (nur die E-Motoren und die Pumpen aktiv)
- V03 (nur die Kompressoren aktiv)

- Öffnen Sie den Dialog **Gruppen** über das Menü **Tabellen**.

Es wurden vier Gruppen mit folgenden Mustern angelegt:

<table>
<thead>
<tr>
<th>Gruppenbezeichnung</th>
<th>Muster</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Motoren</td>
<td>EM*</td>
<td>schließt alle E-Motoren ein</td>
</tr>
<tr>
<td>Pumpen</td>
<td>PU*</td>
<td>schließt alle Pumpen ein</td>
</tr>
<tr>
<td>Kompressoren</td>
<td>KO*</td>
<td>schließt alle Kompressoren ein</td>
</tr>
<tr>
<td>E-Motoren + Pumpen</td>
<td>EM*</td>
<td>PU*</td>
</tr>
</tbody>
</table>

Für jede Gruppe wird zudem der Teilsummenpegel an den aktiven Emissionsorten angezeigt.
Aus der Tabelle **Gruppen** ist ersichtlich, dass die bereits angelegten Varianten-Kurzbezeichnungen als Spaltenüberschriften angezeigt werden.

- Definieren Sie jetzt den Aktivierungszustand für jede Variante unter Verwendung des Plus- (+) oder Minus-Zeichens (-).

Die Zeichen haben folgende Bedeutungen:

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Diese Gruppe ist in dieser Variante aktiviert.</td>
</tr>
<tr>
<td>-</td>
<td>Diese Gruppe ist in dieser Variante deaktiviert.</td>
</tr>
<tr>
<td>Leerzeichen</td>
<td>Diese Gruppe ist in dieser Variante weder aktiviert, noch deaktiviert.</td>
</tr>
</tbody>
</table>

- Geben Sie die Zeichen ein wie in nachfolgender Tabelle aufgeführt:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Muster</th>
<th>Variante</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V01 - alles</td>
</tr>
<tr>
<td>E-Motoren</td>
<td>EM*</td>
<td>+</td>
</tr>
<tr>
<td>Pumpen</td>
<td>PU*</td>
<td>+</td>
</tr>
<tr>
<td>Kompressoren</td>
<td>KO*</td>
<td>+</td>
</tr>
<tr>
<td>E-Motoren + Pumpen</td>
<td>EM*</td>
<td>PU*</td>
</tr>
</tbody>
</table>

Verwenden Sie zum Aktivieren oder Deaktivieren von einzelnen Gruppen für Varianten immer die Gruppentabelle und nicht den jeweiligen Dialog **Gruppe**. Wenn Sie den Aktivierungszustand über den Dialog **Gruppe** ändern, betrifft dies nur die aktuell gewählte Variante (und nicht andere Varianten).

Damit sind folgende Aktivierungszustände im Hinblick auf Varianten V01 bis V03 festgelegt:

- Variante V01; Es sind alle Quellgruppen eingeschaltet.
- Variante V02: Es sind nur die E-Motoren und Pumpen aktiv. Die Kompressoren sind deaktiviert.
Variante auswählen

- Schließen Sie die Tabelle **Gruppen**.
- Aus der Symbolleiste kann nun eine der aktivierten Varianten ausgewählt werden.

Variante V03
- Es sind nur die Kompressoren aktiv. Die E-Motoren und Pumpen sind deaktiviert.
- In allen drei Varianten nimmt die kombinierte Gruppen „E-Motoren + Pumpen“ nicht an der Varianten-Umschaltung teil.

Varianten berechnen

Beachten Sie, dass zu diesem Zeitpunkt die angezeigten Ergebnisse noch nicht valid sind, da noch keine Berechnung durchgeführt wurde.

Objekte, die in einer Variante deaktiviert wurden, werden auf dem Bildschirm unter Verwendung der Darstellungsoptionen für deaktivierte Objekte angezeigt (siehe Kapitel 9.1.4.6).

Bei Klick auf das Taschenrechner-Symbol in der Symbolleiste wird nur die gewählte Variante berechnet. Hingegen können mit dem Befehl **Rechne** aus dem Menü **Berechnung** die aktuelle oder alle Varianten, oder auch nur ausgewählte Varianten berechnet werden.

Dialog **Rechne** im Menü **Berechnung**
Im Dialog **Gruppen** (im Menü **Tabellen**) werden nur die Ergebnisse der beim Start der Berechnung ausgewählten (aktiven) Variante angezeigt, unabhängig davon, dass alle Varianten gleichzeitig berechnet wurden.

を持っている

Dieselbe Einschränkung gilt auch für die Teilpegellisten an Immissionspunkten und im Menü **Tabellen|Teilpegel**.

In einer **CadnaR**-Datei mit verschiedenen aktivierte Varianten wird aus Speicherplatzgründen nur ein Immissionspunktraster gespeichert. Verwenden Sie die Befehle **Speichern** und **Öffnen** im Menü **Raster**, um Raster für verschiedene Varianten zu speichern und zu wieder zu öffnen.
Kapitel 9 - Referenz

9.1 Menübefehle

9.1.1 Menü Datei

Beim Auswahl des Befehls **Neu** wird eine neue "leere" Datei geöffnet, in die Objekte eingefügt werden können. Ist bereits eine Datei geöffnet, an der Änderungen vorgenommen wurden, die noch nicht gespeichert sind, so erscheint eine Sicherheitsabfrage mit der Möglichkeit, die geöffnete Datei zu speichern.

Bei Anklicken des Befehls **Öffnen** oder nach Anklicken des Symbols auf der Symbolleiste kann ein bereits bestehende **CadnaR-Datei** (Dateiendung *.cni) ausgewählt, geöffnet und anschließend bearbeitet werden (alternative Tastenkombination: STRG+O).

Beim Anklicken dieses Befehls oder nach Anklicken des Symbols auf der Symbolleiste wird die gerade bearbeitete Datei unter ihrem bereits bestehenden Namen (mit ggfs. vorgenommenen Änderungen) gespeichert. Handelt es sich um eine neue, noch nicht abgespeicherte Datei, so öffnet sich das Dialogfenster "Speichern unter" (alternative Tastenkombination: STRG+S).

CadnaR-Dateien haben die Dateiendung *.cni. Beim Speichern einer Datei ergänzt CadnaR die Endung automatisch, sofern diese nicht angegeben wurde.
Kapitel 9 - Referenz
9.1.1 Menü Datei

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speichern unter</td>
<td>Mit dem Befehl Speichern unter kann ein neuer Name zum Speichern der aktuellen Datei vergeben werden.</td>
</tr>
<tr>
<td></td>
<td>Bei Wahl eines bereits vorhandenen Dateinamens erscheint eine Sicherheitsabfrage mit der Möglichkeit, den Speichervorgang abzubrechen. Mit Bestätigung von „Ja“ wird die bereits vorhandene Datei mit der aktuellen überschrieben und bei „Nein“ wird der Speichervorgang abgebrochen. In diesem Fall wählen Sie zum Speichern der aktuellen Datei einen anderen, noch nicht existierenden Namen.</td>
</tr>
<tr>
<td>Import</td>
<td>siehe Kapitel 9.1.1.1</td>
</tr>
<tr>
<td>Datenbank</td>
<td>siehe Kapitel 9.1.1.2</td>
</tr>
<tr>
<td>Export Bericht</td>
<td>siehe Kapitel 9.1.1.3</td>
</tr>
</tbody>
</table>

- **DXF-Datei für AutoSketch**: Ist diese Option deaktiviert, werden dxf-Dateien für CAD-Programme wie z.B. AutoCad erzeugt. Ist diese Option aktiviert, so werden AutoSketch-kompatible dxf-Dateien erzeugt.

- **Generiere Header**: Diese Option steht z.Z. nicht zur Verfügung.

- **Verwende Solids**: Ist diese Option aktiviert, werden Volumenobjekte (z.B. Quaderquelle, Hindernisquader) beim dxf-Export als Solids ausgegeben, ansonsten als hochgezogene Polylinien.

- **Verwende 3D-Flächen**: Diese Option steht z.Z. nicht zur Verfügung.

- **Verwende Farben**: Diese Option steht z.Z. nicht zur Verfügung.

- **Iso-dB-Linien**:
 - **Option "verwende tatsächliche Höhe"**: Ist diese Option aktiviert entspricht die Höhe (z-Koordinate) der Isolinien der Höhe der Rasterimmisionspunkte. Ist diese Option nicht aktiviert, liegen die Isolinien auf der Höhe Null.
 - **Option "Ausgabe als Polylinien"**: Ist diese Option aktiviert, werden Isolinien als (zusammenhängende) Polylinien, ansonsten als einzelne Linienstücke ausgegeben.

- **Iso-dB-Flächen**: Ausgabe als 3D-Netz: Diese Option steht z.Z. nicht zur Verfügung.

- **Raum und Teilflächen ausgeben**: Ist diese Option aktiviert, werden der Raum und die Teilflächen ebenfalls beim dxf-Export ausgegeben. Diese Option kommt allerdings nur bei CAD-Programmen zum Tragen, die über 3D-Darstellung verfügen.

- **Rasterpunkte nicht ausgeben**: Ist diese Option aktiviert, werden die Immissionspunkte des Rasters nicht ausgegeben.
Drucken Grafik

siehe Kapitel 9.1.1.4

Drucken Bericht

siehe Kapitel 9.1.1.6

Projektdaten

Dialog Projektdatei

Dialogoptionen

- **Projekt**: Es kann ein beliebiger Text zur Projektbeschreibung eingegeben werden (bis zu ca. 200 Zeichen). Dieser Text wird mit dem CadnaR-Datei abgespeichert. Mit der RETURN-Taste kann eine neue Zeile erzeugt werden.

Beenden

Der Befehl **Beenden** schließt CadnaR. Wurde die aktuelle Datei bearbeitet und noch nicht gespeichert, so erscheint ein Hinweis mit der Möglichkeit, vor Beendigung des Programms diese Datei zu sichern.
9.1.1.1 Import

Gegenwärtig können folgende Dateiformate importiert werden:

- CadnaR
- DWG (*.dwg)
- DXF (*.dxf)
- Sketchup SKP (*.skp)
- ASCII-Objects (*.txt)
- ASCII-LibObj (*.txt)

Das CadnaR eigene Dateiformat hat die Dateiendung cni. Jede CadnaR-Datei kann auch über den Befehl Datei|Import in die bestehende Datei importiert werden.

Werden CadnaR-Dateien mit Objekten importiert, die die Bibliotheksobjekte Schallleistungs-, Schalldämmungs-, Absorptionsgrad- oder Streugrad-Spektren referenzieren, so wird beim Import geprüft, ob in der Importdatei Objekte mit gleichem Spektren-ID auftreten. Ist dies der Fall, so wird - falls die Daten vom Original abweichen - jeweils eine Kopie in der entsprechenden Bibliothek mit neuem ID (angehängte Zählziffer) angelegt und verknüpft. Werden jedoch nur einzelne Objekttypen importiert (z.B. Quellen), so werden die verknüpften Bibliotheksobjekte nicht gleichzeitig importiert.
Dialogoptionen

Importiere alle Objekttypen/Objekttypauswahl

Über diesen Teil des Dialogs können die zu importierenden Objektarten durch Markieren mit der Maus ausgewählt werden. Dabei sind Listen- und Mehrfachmarkierungen möglich (Tasten SHIFT und STRG).

Option "nur Immissionswerte updaten", "von Variante"

Falls der Objekttyp "Immissionspunkt" gewählt ist, können - ohne Objekte zu importieren - nur die Immissionswerte aus der ausgewählten Variante aktualisiert werden.

Option „Importiere nur Ausschnitt“

Bei aktivierter Option kann ein in der CadnaR-Zieldatei (aktuelle Datei) vorhandener Ausschnitt gewählt werden. Es werden dann nur diejenigen Objekte importiert, die sich innerhalb des angegebenen Ausschnitts - plus des ggf. eingegebenen Randbereichs - befinden.

Schaltfläche „Transformation“

siehe Kapitel 6.2.11
Mit diesem Importfilter können DWG-Dateien (z.B. aus AutoCAD oder pCon.planner) importiert werden. Dabei werden Objekte, die in CadnaR-Objekte umgewandelt werden können, konvertiert. Nicht überführbare Objekte werden als Hilfspolygone dargestellt.

Wählen Sie zunächst durch einen einfachen Mausklick die zu importierende DWG- oder DXF-Datei aus und klicken Sie anschließend auf die Schaltfläche "Optionen".

In diesem Dialog stehen folgende Einstellungen zur Verfügung:

- **Importiere Layer nach Muster**
 Es werden nur die Layer importiert, die dem eingegebenen Muster entsprechen. Standardmäßig wird der Musterausdruck "ACOUSTIC,AKUSTIK,EGR_INSERT" verwendet, um Daten aus pCon.Planner unmittelbar importieren zu können.

- **Importiere alle aktiven Layer**
 Es werden alle aktiven Layer importiert.

- **Importiere alle Layer**
 Es werden alle Layer importiert, unabhängig davon, ob aktiv oder inaktiv.

Dateiformat DWG (*.dwg)

Importoptionen
• **Importiere Layerauswahl**
 In diesem Fall können aus der Liste der vorhandenen Layer diejenigen durch Mausklick ausgewählt werden, die importiert werden sollen. Aktive Layer in der DWG/DXF-Datei sind mit einem "+", inaktive Layer mit einem "-" gekennzeichnet.

• **Nach Importvorgang warten**
 Bei aktivierter Option bleibt der Dialog der Fortschrittsanzeige nach dem Importvorgang stehen und ermöglicht so, die angezeigten Meldungen zu studieren. Schließen Sie den Dialog mit "Schließen".

• **ausführliche Fortschrittsanzeige**
 Es werden zusätzliche Informationen innerhalb der Fortschrittsanzeige angezeigt.

• **verwende Skalierungsfaktor**
 Es kann ein translatorisch wirkender Transformationsfaktor eingegeben werden, der auf alle Objektkoordinaten (x, y, z) angewandt wird (Standardwert: 1).

• **Importiere alle Objekte als Hilfspolygone**
 Bei aktivierter Option werden Objekte nicht in CadnaR-spezifische Objekte umgewandelt, sondern als Hilfspolygone importiert.

• **verwende Triangle Lists in Hilfspolygonen für 3D-Darstellung**
 Bei aktivierter Option werden zusammenhängende Dreiecke als ein Hilfspolygon (sogenannte 'Triangle List') eingelesen, gespeichert und in der 3D-Ansicht dargestellt.

• **kleine Dreiecke ignorieren mit Umfang in Meter kleiner**
 Bei aktivierter Option werden Dreiecke mit einem Umfang kleiner dem eingegebenen Wert (m) ignoriert.
Mit diesem Importfilter können DXF-Dateien importiert werden. Dabei werden Objekte, die in CadnaR-Objekte umgewandelt werden können, konvertiert. Nicht überführbare Objekte werden als Hilfspolygone dargestellt.

siehe Abschnitt "Dateiformat DWG (*.dwg)"

Modelle, die mit SketchUp (http://www.sketchup.com) erstellt wurden, werden als Hilfspolygone importiert. Der Farbdarstellung der Hilfspolygone kommt keine Bedeutung zu.
Das Format „ASCII-Objects“ dient zum Import von Objektgeometrien aus Textdateien. Es können sowohl Punktobjekte, als auch offene oder geschlossene Polygonzüge mit einer beliebigen Anzahl von Koordinatenpunkten (x,y,z) importiert werden. Dabei werden Objekte, die in CadnaR als geschlossene Polygone definiert sind, beim Import korrekt geschlossen.

Die Objektgeometrien können unmittelbar beim Import einem CadnaR-Objekttyp zugeordnet werden, so dass keine nachträgliche Umwandlung des Objekttyps erforderlich ist. Neben der Zeile für Importbeginn kann die Art des Spaltentrennzeichens und die Spaltenzuordnung für die Koordinaten (x,y,z) frei gewählt werden.

Über Leerzeilen oder über einen objekt-spezifischen ID wird gesteuert, ob in CadnaR mehrere Objekte erzeugt werden oder ob alle importierten Punkte zu einem einzigen Objekt gehören.

Dialog Importoptionen für ASCII-Import
Wählen Sie hier die Ziel-Objektart aus. Die Objektart "Hilfspolygon" ist voreingestellt.

Falls der Dateikopf der ASCII-Datei Textzeilen aufweist, die keine relevanten Daten enthalten, können Sie hier die Zeilen-Nr. auswählen, bei der der Import beginnen soll (Zeilen-Nrn. 1 bis 20). Die Textdatei muss somit nicht in jedem Fall extern nachbearbeitet werden.

Weisen Sie die Datenspalten mit Hilfe der drei Listenfelder den Koordinaten (x,y,z) zu. Eine Leerzeile signalisiert den Beginn eines neuen Objekts, solange keine ID verwendet wird. Nachkommastellen müssen mit einem Punkt getrennt sein. Es können bis zu 20 Spalten adressiert werden.

Über das Listenfeld "ID" kann - falls vorhanden - eine Spalte dem Attribut ID zugewiesen werden (Standardinstellung: "keine"). Wird ein ID beim Import zugewiesen, so bewirkt jeder neue, vom vorigen ID abweichende ID-Eintrag in der Importdatei, dass ein neues Objekt erzeugt wird (siehe auch Abschnitt „Beispiele“).

Ist diese Option aktiviert, kann ein in der CadnaR-Zieldatei vorhandener Ausschnitt ausgewählt werden. Es werden dann nur die Objekte importiert, die innerhalb des angegebenen Ausschnitts liegen.

Zur Reduzierung der Datenmenge kann die Objektgeometrie beim Import vereinfacht werden. Geben Sie nach Aktivierung der Option einen horizontalen oder ggf. auch einen vertikalen Stich ein. Ist der senkrechte Abstand (Lot) eines Punktes auf die Verbindungslinie zwischen den benachbarten Punkten kleiner als die angegebene Stichlänge, so wird dieser Punkt gelöscht.
Vorschau der Datei
In diesem Dialogbereich werden die ersten Zeilen der ausgewählten ASCII-Datei angezeigt. Verwenden Sie diese Anzeige als Hilfe bei der Festlegung der Importoptionen.

Vorschau der Punkte
Dieser Dialogbereich zeigt eine Vorschau der Punkte unter Berücksichtigung der eingestellten Importoptionen an. In Verbindung mit den Dateivorschaufenster kann damit in komfortabler Weise vor dem eigentlichen Importvorgang beurteilt werden, ob die aktuellen Einstellungen zum gewünschten Ergebnis führen.

Schaltfläche „Transformation“
Über die Schaltfläche „Transformation“ können die zu importierenden Objekte während des Importvorgangs transformiert werden (siehe Kapitel 6.2.11 "Transformation").

Schaltfläche „Defaults“
Die Schaltfläche „Defaults“ ermöglicht, die aktuellen im Dialog Optionen für ASCII-Import getroffenen Einstellungen zu speichern. Wählen Sie dazu den Befehl Speichern unter aus dem Kontextmenü aus und geben Sie im Dialog Einstellungen speichern eine Bezeichnung ein.

Die eingegebenen Bezeichnungen werden bei Klick auf die Schaltfläche „Defaults“ aufgelistet. Verwenden Sie die Maus, um eine Einstellung auszuwählen. Über das Untermenü Löschen wird die gewählte Einstellung ohne Sicherheitsabfrage gelöscht.
Dieses Dateiformat ermöglicht den Datenimport aus Textdateien für folgende Spektren-Typen:

- Schalldämmungen
- Absorptionen
- Streugrade
- Schallleistung

Die Dialogoptionen stimmen, bis auf nachfolgend aufgeführte Abweichungen, mit den entsprechenden Optionen für das Dateiformat „ASCII-Objects“ überein (siehe oben).

Wählen Sie hier die Art der Ziel-Bibliothek aus. Die importierten Spektren werden grundsätzlich in der lokalen Bibliothek abgelegt.

Neben dem ID sind auch die Bezeichnung, die Herkunft („Quelle“) sowie - falls zutreffend - der Spektren-Typ zuweisbar.

Nach Deaktivierung der Option „nur Oktaven“ stehen Terzmitten-Frequenzen zur Zuordnung zur Verfügung.
9.1.1.2 Datenbank-Import (ODBC)

Über das Menü Datei|Datenbank können tabellierte Daten aus verschiedenen Datenquellen über die ODBC-Schnittstelle (Open Database Connectivity) von WINDOWS importiert werden. Die Arten der Objekte bzw. der Objektdaten sind aus der Tabelle „Objektart“ im Dialog Datei|Datenbank|Definition ersichtlich. Für Punktobjekte (Punktquelle, Immissionspunkt) ist auch der Import der Geometrie (xyz-Koordinaten) möglich.

Gegebenenfalls müssen die erforderlichen Treiber noch installiert und die Datenbankverbindung konfiguriert werden. Es reicht nicht aus, dass sich die Treiber nur auf Ihrem System befinden. Auch eine Datenbank mit der entsprechenden Tabelle, aus der Sie die Parameter importieren können, muss angelegt sein (ODBC-Treiber der gewünschten Datenbank zuordnen). Erst dann erscheint die gewählte Datenquelle in der Liste.

Auf diese Liste können Sie anschließend in CadnaR zugreifen. Allerdings können Sie diese Verbindung auch in CadnaR direkt aufrufen. Dazu ist also kein Wechsel auf die Systemebene erforderlich. Wählen den Befehl **Definieren** im Menü **Datei**|**Datenbank**.
Im Dialog **Datenquelle auswählen** wird zuerst die Datenquelle gewählt. Klicken Sie dazu auf das Dateiauswahlsymbol und wählen Sie das der Datenbank entsprechende System aus. Schließen Sie anschließend das Fenster mit OK.

Als Voraussetzung für den Import aus einer MS-Excel-Datei muss der zu importierende Datenbereich benannt sein (z.B. mit „Daten“). Auf diesen Bereich der Tabelle wird über das Listenfeld „Tabelle“ im Dialog **Datenbank** zugegriffen.

Wählen Sie zunächst - bevor Sie eine Tabelle aus der angegebenen Datenbank aussuchen - die gewünschte Objektart, deren Parameter Sie einlesen wollen, durch Klicken mit der Maus aus. Aktivieren Sie anschließend die Option „Objektart einbinden“ und wählen Sie die entsprechende Tabelle („Bereich“) aus dem Listenfeld „Tabelle“ aus.

Doppelklicken Sie in der Tabelle „Spaltenzuordnung“ auf die Attributzeile, für die Daten vorhanden sind. Wählen Sie den entsprechenden Tabellenspaltennamen der gewählten Datenbanktabelle aus (zu den verfügbaren Objektattributen siehe Kapitel 9.3).

Verlassen Sie nach Abschluss der Spaltenzuordnung den Dialog mit OK. Danach werden die Daten mit dem Befehl Importieren aus dem Menü Datei|Datenbank einlesen.

Wählen Sie im Dialog Datenbank importieren eine oder beide Optionen aus:

- vorhandene Objekte aktualisieren: Es werden nur die schon vorhandenen Objekte aktualisiert, ohne nicht vorhandene hinzuzufügen.
- nicht vorhandene Objekte anhängen: Es werden die nicht vorhandenen Objekte anhängt, ohne die vorhandenen zu aktualisieren.

Sind beide Kontrollkästchen aktiviert, so werden die vorhandenen Objekte aktualisiert und die nicht vorhandenen Objekte angehängt.
Bitte beachten Sie, dass der Datenimport über ODBC als reiner Text erfolgt und dass - abhängig vom jeweiligen ODBC-Treiber - nachfolgende Anforderungen und Beschränkungen bezüglich des Dateipfads, des Dateinamens und der zu importierenden Textformate zutreffen können:

- Die akzeptierte Länge des Dateipfads kann sich abhängig vom ODBC-Treiber unterscheiden. Falls beim Import Probleme auftreten, kopieren Sie die Datei in ein Verzeichnis mit kürzerem Pfad (z.B. C:\...)
- Der von einigen ODBC-Treiber akzeptierte Dateiname ist auf 8+3 Zeichen begrenzt (wie schon von Windows 3.11 erzwungen).
- Spaltenbezeichnungen müssen mit Text (d.h. mit Buchstaben) beginnen. Zahlen als führende Spaltenbezeichner führen i.d.R. zu Importfehlern.
- In Spaltenbezeichnungen sind keine Sonderzeichen oder Leerzeichen zulässig (bis auf den Unterstrich „_“).

Falls Fehlermeldungen beim ODBC-Import vom Windows-Betriebssystem angezeigt werden, kann dies an einer aus einem früheren Import nicht zurückgesetzten ODBC-Verbindung resultieren. Um eine fehlerhafte ODBC-Verbindung zurückzusetzen, halten Sie die STRG-Taste bei der Auswahl des Befehls Datenbank\Definition (Menü Datei) gedrückt. Eventuell vorhandene Attribut-Zuordnungen bleiben bei diesem Vorgang erhalten.
9.1.1.2 Datenbank-Import (ODBC)
9.1.1.3 Export Bericht

Dialog Optionen für Export

 - **Schaltfläche "Auswählen"**: Über diese Schaltfläche kann eine Musterdatei für den Ausdruck gewählt werden. Die Musterdatei für den Export hat die Dateiendung TXT oder RTF. Bei RTF-Dateien bleiben Diagramme und Tabellen beim Export erhalten. Da auch die Musterdateien für den Ausdruck die Dateiendung TXT verwenden, sollten Musterdateien für Ausdruck und Export getrennt gespeichert werden.

 - **Schaltfläche "Editieren"**: Nach Klick auf diese Schaltfläche kann die aktuell gewählte Musterdatei editiert und unter einem neuen Namen gespeichert werden.

- **Ausgabedatei**: In die Ausgabedatei werden die exportierten Daten entsprechend den Definitionen in der Musterdatei geschrieben.

- **Ausgabedatei beim Export auswählen**: Ist diese Option aktiviert, wird eine Datei erst nach Auslösen des Exportbefehls ausgewählt bzw. angelegt.
- **Ausgabedatei überschreiben**: Diese Option ist immer automatisch aktiviert, wenn die Option "Ausgabe an Datei anhängen" nicht aktiviert ist.

- **Ausgabe an Datei anhängen**: Diese Option sollte nur gewählt werden, wenn als Ausgabedatei ein ASCII-Format gewählt wurde. Die exportierten Daten werden dann am Ende einer bestehenden Datei angehängt.

- **Textverarbeitung nach Export starten**: Bei aktivierter Option wird nach dem Exportieren der Daten, das mit dem Dateityp der Export-Datei verknüpfte Anwendung automatisch gestartet und die exportierten Daten angezeigt.

- **Feld "Kommandozeile"**: Soll nicht die mit dem Dateityp der Export-Datei verknüpfte Anwendung gestartet werden, so kann dies über die Kommandozeile erfolgen.

 Beispiel: excel %s

 startet MS-Excel zur Anzeige der Daten, wobei %s der Platzhalter für den Dateinamen ist.

- **Schaltfläche "Export"**: Bei Klick auf diese Schaltfläche werden die Daten exportiert, die mit dem Dateityp der Export-Datei verknüpfte Anwendung automatisch gestartet und die exportierten Daten angezeigt.
9.1.1.4 Drucken Grafik

Dialog Drucken Grafik

- **Drucker**: Wählen Sie über die Schaltfläche "Einrichten" einen installierten Drucker aus (und zudem ggf. die Papiergröße und das Seitenformat).
- **Seitenränder**: Es kann alternativ die Blattgröße durch Eingabe der Seitenränder und/oder Höhe und/oder Breite definiert werden. Die Abstände (Oben/Unten und Links/Rechts) werden vom "Papierrand" gemessen in (mm) angegeben. Dabei ist der Seitenrand der Abstand vom möglichen Druckbereich des individuellen Druckers zuzüglich dieser angegebenen Abstände. Die Höhe wird ausgehend von dem angegebenen oberen Seitenrand gemessen und die Breite vom angegebenen linken Seitenrand.

Beispiel: Seitenrand Oben = 20 mm, Höhe = 200 mm, Blattgröße somit 220 mm
• **Ausdruck:**

 - **Standard (Designer):** Nach Klick auf die Schaltfläche "Plot-Designer" wird der Dialog **Plot-Designer** (siehe Kapitel 9.1.1.5) geöffnet.

 - **Schaltfläche "Auswählen":** Über diese Schaltfläche kann eine Musterdatei für den Ausdruck gewählt werden. Die Musterdatei hat die Dateiendung TXT. Da auch die Export-Musterdateien diese Dateiendung verwenden, sollten Musterdateien für Ausdruck und Export getrennt gespeichert werden.

 - **Schaltfläche "Editieren":** Nach Klick auf diese Schaltfläche kann die aktuell gewählte Musterdatei editiert und unter einem neuen Namen gespeichert werden.

• **Sonstiges:**

 - **Druckqualität:** Die zur Verfügung stehenden Druckqualitäten sind vom ausgewählten Drucker abhängig. Sie kann nach Klick auf den Pfeil der Auswahlliste gewählt werden.

 - **Kopien:** Anzahl der auszudruckenden Kopien

 - **Druck in Datei:** Wenn diese Option aktiviert ist, wird der Ausdruck in eine Datei umgeleitet. Nach Klicken der Schaltfläche OK wird der Dateinamen abgefragt.
• **Standard-Bereich:**
 - *Standard*: Voreinstellung
 - *Umgriff*: Die eingestellte Raumgrundfläche wird für den Ausdruck verwendet (siehe Kapitel 9.1.4.2 "Raum").
 - *Fenster*: Es wird nur der Teil der Grafik ausgedruckt, der auf dem Bildschirm aktuell zu sehen ist.
 - *Ausschnitt*: Es kann ein in der Datei angelegten und bezeichneten Ausschnitt (siehe Kapitel 5.15) ausgewählt werden.

• **Schaltfläche „Drucken“**: Der Druckvorgang über den ausgewählten Drucker wird gestartet.

• **Schaltfläche "Vorschau"**: Der Dialog **Druckvorschau** wird in Ganzseitenansicht geöffnet.
Der Dialog **CadnaR Druckvorschau** zeigt die Grafik bzw. den Bericht in der Ganzseitenansicht, je nachdem, ob **Drucken Grafik** oder **Drucken Bericht** (siehe Kapitel 9.1.1.6) gewählt wurde.

Dialog CadnaR Druckvorschau

- **Schaltfläche "Zoom"**: schaltet zwischen Ganzseitenansicht und wirklicher Größe (Maßstab 1:1) hin und her. Um einen bestimmten Ausschnitt aus der Druckvorschau herauszuzoomen, klicken Sie einmal mit der Maus an die gewünschte Stelle. Ein zweiter Mausklick schaltet in die Ausgangssituation zurück.

- **Schaltfläche "Drucken"**: startet den Druckvorgang über den ausgewählten Drucker

- **Schaltfläche "Kopieren"**: z.Z. noch ohne Funktion
9.1.1.5 Plot-Designer

Die linke Seite des Dialogs **Plot-Designer** zeigt die Druckvorschau des Plots, die sogenannte Grafik-Vorschau. Die rechte Seite des Dialogs zeigt die Hierarchieliste aller Zellen in einer Explorer-ähnlichen Baumstruktur, die Zellenliste. Die aktuell ausgewählte Zelle ist sowohl in der Plot-Vorschau als in der Zellenliste hervorgehoben.
Zellenliste bearbeiten

Die Zellenliste zeigt die Hierarchie (Vater, Kind) der Zellen. Die aktive Zelle ist markiert. Durch Klick mit der Maus auf das Zelltyp-Symbol oder die Bezeichnung wird die entsprechende Zelle markiert. Alternativ können die Positionierpfeile auf der Symbolleiste oder die Pfeiltasten auf der Tastatur verwendet werden, um Objekte zu markieren.

Vor Containern steht entweder ein Plus (+) oder ein Minus (-). Das Plus zeigt an, dass sich im Container weitere Elemente befinden, entweder weitere Container und/oder andere Zellen. Zum Öffnen des Containers klicken Sie das Pluszeichen an, das dann zu einem Minuszeichen wird. Analog klicken Sie das Minuszeichen an, um den Container wieder zu schließen. Ein Container ohne Vorzeichen enthält keine weiteren Elemente.

Markieren Sie die Zelle, nach der Sie eine Zelle hinzufügen möchten und klicken Sie die gewünschte Zellenart in der Symbolleiste an.

Ist die markierte Zelle kein Container, so wird die neue Zelle unterhalb der markierten Zelle auf gleicher Ebene eingefügt. Wurde ein Container markiert, so wird die neue Zelle in diesen Container als „Kind“, also eine Stufe tiefer, eingefügt - unabhängig davon, ob es sich bei der eingefügten Zelle um einen Container oder eine andere Zelle handelt.

Es bestehen zwei Möglichkeiten einzelne Zellen oder Container innerhalb der Zellenliste zu positionieren:

• mit den Positionierpfeilen oder
• per Drag & Drop mit der Maus.

Mit den Positionierpfeilen auf der Symbolleiste kann die aktive Zelle auf eine andere Hierarchieebene verschoben werden.

• Zelle in der Zellenliste nach oben verschieben
• Zelle in der Zellenliste nach unten verschieben
• Zelle in der Zellenliste um eine Ebene nach oben verschieben
• Zelle in der Zellenliste um eine Ebene nach unten verschieben

Alternativ können einzelne Zellen oder Container mit der Maus innerhalb der Zellenliste verschoben werden.

Klicken Sie dazu mit der linken Maustaste auf die Zelle oder den Container, die/der verschoben werden soll und halten Sie die Taste gedrückt. Ziehen Sie jetzt die Zelle oder den Container an die neue Position in der Zellenliste und lassen Sie die linke Maustaste los. Daraufhin wird die Zelle bzw. der Container am neuen Ort eingefügt.
Symbolleiste

Bei Anklicken eines der Symbole auf der PlotDesigner-Symbolleiste wird die entsprechende Funktion ausgelöst oder ein Dialog geöffnet.

Eigenschaften

Es werden die Eigenschaften des aktuell gewählten Elements angezeigt. Alternativ wird der Dialog Eigenschaften Zelle auch nach Doppelklick auf ein Element in der Legendendefinition geöffnet.

Löschen

Das gewählte Element wird nach einer Sicherheitsabfrage aus der Legendendefinition gelöscht.

x-y-z-Container

weitere Zelltypen: siehe unten

Plot-Datei hinzuladen

Ermöglicht das Hinzuladen einer Plot-Datei (Dateiendung cnp) mit Zellen zu der im Plot-Designer schon vorhandenen Zellenliste.

Plot-Datei öffnen

Ermöglicht das Laden einer Plot-Vorlage (Dateiendung cnp).

Plot-Datei sichern

Ermöglicht das Speichern einer Plot-Vorlage (Dateiendung cnp).

* Mit dem CadnaR-Software-Paket werden eine Vielzahl von Plot-Vorlagen für verschiedene Papierformate mitgeliefert (siehe Verzeichnis PlotDesigner\Plot Vorlagen DIN.*
Bei Anklicken dieses Symbols wird die Zellenliste mit allen Containern vollständig aufgeklappt. In dieser Einstellung sind alle Objekte in allen Containern sichtbar.

Der letzte Zustand der angezeigten Struktur wird in der CadnaR-Datei gespeichert und steht daher nach erneutem Öffnen direkt zur Verfügung.

Ermöglicht das Kopieren der Grafik in die Zwischenablage. In einem weiteren Dialog wird das Dateiformat und ggf. die Auflösung abgefragt.
Die Planzelle nimmt die Grafik aus **CadnaR** auf und zeigt diese nach Einfügen der Planzelle an. Welcher Teil des Plans angezeigt wird, hängt von den gewählten Optionen im Dialog **Eigenschaften** der Planzelle ab.

- **Druckbereich**: Hier wird der zu druckende Bereich ausgewählt:
 - *Umgriff*: Der Druckbereich wird den eingestellten Umgriff bestimmt.
 - *Fenster*: Die Größe des **CadnaR**-Hauptfensters bestimmt den Druckbereich.
 - *Ausschnitt*: Ein vorhandener Ausschnitt kann ausgewählt werden.
- **Maßstab**: Hier wird der Maßstab ausgewählt:
 - *anpassen*: Der Maßstab wird an die Blattabmessungen abgepasst.
 - *anpassen (Normreihe)*: Der Maßstab wird in festgelegten Schritten an die Blattabmessungen abgepasst.
 - *Fenster*: Der Maßstab des Ausdrucks stimmt mit dem im **CadnaR**-Hauptfenster gewählten Maßstab überein.
 - *Eingabe*: Es kann ein Maßstab eingegeben werden (Standardwert 1:1000).
• **Variante**: Wählen Sie die darzustellende Variante aus (Standard: aktuelle Variante).

• **Option "Zelle ganz ausfüllen"**: Diese Option wirkt sich nur aus, wenn der Druckbereich „Fenster“ oder „Ausschnitt“ gewählt wurde. Bei aktivierter Option stellt CadnaR bei genügend Platz mehr von der Grafik dar, als im Fenster bzw. Ausschnitt angezeigt werden würde.

• **Option "Achsenbeschriftung"**: Mit aktivierter Option werden die Koordinaten an allen vier Seiten ausgedruckt.

• **Rand freihalten (mm)**: Dieser Wert erzeugt einen entsprechenden Abstand zu dieser Koordinatenskala (Standardwert 11.0 mm).

Die 3D-Zelle zeigt die 3D-Raumansicht für einen vorgegebener Beobachter-Standort oder für einen aus bis zu 4 Presets wählbaren Standort, der im Dialog **3D-Ansicht** gespeichert wurde. Wählen Sie im Listenfeld "Variante" die darzustellende Variante aus (Standard: aktuelle Variante).

Mit der Bitmap-Zelle können Dateien (z.B. Bilder, Logos), die im Bitmap-Format vorliegen, auf einem Ausdruck angezeigt werden (Dateiformat BMP). Ist die Option „Originalseitenverhältnis“ aktiviert, so wird das Seitenverhältnis der Bitmap beibehalten und diese u.U. dementsprechend verkleinert.

Mit der Legendenzelle können Raster- und Objektlegenden angezeigt werden.

Durch Eingabe eines Suffix kann die standardmäßige Anzeige von dB abgeändert werden. Ist diese Option "Font an Zellenhöhe anpassen" aktiviert, so wird die Zeichengröße automatisch an die verfügbare Zellenhöhe angepasst. Bei deaktivierter Option wird die gewählte Zeichengröße verwendet, unabhängig davon, ob der Test in die Zelle passt.
Die Makrozelle ermöglicht, bereits erstellte Grafik-Druckmusterdateien zu verwenden. Kopieren Sie dazu den Inhalt der Musterdatei in die Makrozelle und löschen alle anderen Zellen bis auf den Root-Container.

Alternativ können andere Schlüsselworte (siehe Kapitel 9.2) oder Textbausteine (siehe Kapitel 9.1.7.6, Abschnitt "Textbausteine (lokal)") verwendet werden.

Der Dialog **Eigenschaften Zelle** enthält mehrere Registerkarten mit verschiedenen Eigenschaften, die geändert werden können. Die Eigenschaften beziehen sich auf die aktuell gewählte Element/Zelle.

Es kann ein Namen vergeben werden, der anschließend in der Zellenliste angezeigt wird.

- **Deaktiviert**: Durch Aktivierung dieser Option können Sie die Zelle ausschalten. Dadurch ist die Zelle und der Zelleninhalt unsichtbar.

- **Im Plot-Designer nicht darstellen**: Diese Option dient dazu, den Bildschirmaufbau zu beschleunigen, indem der Inhalt der Zelle nicht angezeigt wird.
Registerkarte "Abmessungen"

Es können sowohl die Höhe (vertikale Größe) als auch die Breite (horizontale Größe) der Zelle definiert werden. Da sowohl die Breite als auch die Höhe analog eingegeben werden, wird nur die Breite im Detail beschrieben.

- **Breite der Zelle**

 - **automatisch**: CadnaR berechnet automatisch eine passende Breite für die Zelle. Dies wäre für eine Textzelle die Länge der Textzeile, die angezeigt werden soll. Für eine Containerzelle wird die Breite aus der Breite der Kinderzellen berechnet.

 - **so groß wie möglich**: Die Zelle wird so breit wie möglich. Sie füllt den zur Verfügung stehenden horizontalen Platz aus.

 - **mindestens, genau, höchstens**: Geben Sie einen Wert ein und wählen Sie die Einheit aus, entweder in Millimeter (mm), Wert in Prozent % oder bei Textzellen auch Anzahl Zeilen.
 - **mindestens**: erlaubt der Zelle auch größer zu sein, abhängig vom Platz,
 - **genau**: die Zelle wird auf die Größe des eingegebenen Werts festgelegt,
 - **höchstens**: erlaubt der Zelle auch kleiner zu sein, falls der Platz nicht ausreicht.

Es kann der Zellenrand definiert werden, der eine weiße Fläche innen am Zellenrahmen bildet. Die Zelle wird dadurch entsprechend kleiner. Damit können Sie auch z.B. Text im Textrahmen einrücken.

Registerkarte "Ränder"

Geben Sie einen Wert ein und wählen Sie eine der angebotenen Methoden, um die Ränder zu definieren. Sie können einen Wert für alle vier Seiten definieren oder verschiedene Ränder für links-rechts oder oben-unten oder auch für alle vier Seiten individuell.
Wenn Sie die Option "Faltmarken nach DIN 824" aktivieren werden Faltmarken, senkrechte Striche, gedruckt. Sind keine Ränder definiert, befinden sich diese ggf. direkt auf der Koordinatenskala (siehe Planzelle).

Registerkarte "Rahmen"

In der Registerkarte "Rahmen" definieren Sie das Aussehen der Zellenrahmen, indem Sie auf eine der Linienschalter klicken und dort eine Linienart aus der Liste auswählen und die Stärke der Linie eingeben.

Wenn Sie auf den Farbschalter klicken können Sie auch eine andere Farbe für die Rahmen auswählen. Wählen Sie wieder, wie oben beschrieben, auf welche Seitenrahmen sich die Einstellungen auswirken sollen.

Registerkarte "Stil"

Diese Registerkarte ermöglicht Einstellungen, um das Aussehen der Zelle festzulegen.
• **Hintergrund**: Wählen Sie die Hintergrundfarbe und den Typ. Beachten Sie, dass bei Container-Zellen ggf. die Hintergrundfarbe nicht sichtbar ist, da die gesamte Zelle von anderen Zellen ausgefüllt ist, die einen eigenen Hintergrund aufweisen.

• **Schriftart**: Diese Auswahl steht nur bei Textzellen zur Verfügung.

• **Vom Vater erben**: Auch die Vererbbarkeit von Eigenschaften kann hier definiert werden. Ist diese Option aktiviert, erhalten die Kinderzellen die Eigenschaften der Vaterzelle. Um nicht alle Kinderzellen ändern zu müssen, ist es von Vorteil nur in den Vaterzellen Änderungen vorzunehmen und bei den Kinderzellen die Option vom Vater vererben zu aktivieren.

• **Ausrichtung**: Wählen Sie wie die Ausrichtung des Zelleninhalts erfolgen soll:
 - vertikal: oben, Mitte oder unten
 - horizontal: links, Mitte oder rechts

siehe Abschnitt „Zellentypen“

Registerkarte "Zelltyp"
Kapitel 9 - Referenz
9.1.1.5 Plot-Designer
9.1.1.6 Drucken Bericht

Objektdaten und Berechnungsergebnisse können in tabellarier Form aus CadnaR ausgedruckt werden.

![Drucken Bericht Dialog](image)

Dialog Drucken Bericht

- **Drucker**: Wählen Sie über die Schaltfläche "Einrichten" einen installierten Drucker aus (und zudem ggf. die Papiergröße und das Seitenformat).

- **Seitenränder**: Es kann alternativ die Blattgröße durch Eingabe der Seitenränder und/oder Höhe und/oder Breite definiert werden. Die Abstände (Oben/Unten und Links/Rechts) werden vom "Papierrand" gemessen in (mm) angegeben. Dabei ist der Seitenrand der Abstand vom möglichen Druckbereich des individuellen Druckers zuzüglich dieser angegebenen Abstände. Die Höhe wird ausgehend von dem angegebenen oberen Seitenrand gemessen und die Breite vom angegebenen linken Seitenrand.

 Beispiel: Seitenrand Oben = 20 mm, Höhe = 200 mm, Blattgröße somit 220 mm
• **Text Kopf/Fußzeile:** Für Kopf- und Fußzeile besteht eine zusätzliche Texteingabemöglichkeit. Der Text erscheint auf jeder ausgedruckten Seite. Es stehen alle Schlüsselwörter für Ausdrucke zur Verfügung (z.B. auch Schriftart und -größe).

Beispiel: `(Font,,8) #(Datum), #Zeit`

zeigt im aktuell eingestellten Zeichensatz, in Schriftgröße 8 pt, das aktuelle Datum und die Uhrzeit in der Kopf- oder Fußzeile an.

• **Ausdruck:** Im Feld "Muster" wird der Dateiname der aktuell gewählten Musterdatei angezeigt, die von CadnaR als Vorlage für den Berichtsdruck verwendet wird (siehe Kapitel 9.1.1.7). Mitgelieferte Musterdateien können unter Verwendung von Schlüsselwörtern modifiziert und unter einem neuen Namen gespeichert werden oder vollständig neu angelegt werden. Bei einer Neuinstallation werden die mitgelieferten Musterdateien ggf. überschrieben.

 - **Schaltfläche "Auswählen":** Über diese Schaltfläche kann eine Musterdatei für den Ausdruck gewählt werden. Die Musterdatei hat die Dateiendung TXT. Da auch die Export-Musterdateien diese Dateiendung verwenden, sollten Musterdateien für Ausdruck und Export getrennt gespeichert werden.

 - **Schaltfläche "Editieren":** Nach Klick auf diese Schaltfläche kann die aktuell gewählte Musterdatei editiert und unter einem neuen Namen gespeichert werden.

• **Druckbereich:**

 - **Alles:** Ist diese Option aktiviert, so wird das gesamte Ergebnisprotokoll über den ausgewählten Drucker ausgegeben oder in eine Datei geschrieben.

 - **Ausgewählte Bereiche:** Ist diese Option aktiviert, werden nur die Bereiche gedruckt, die in der Liste mit den Bereichsbezeichnungen durch Anklicken markiert wurden. Wird die Shift-Taste beim Anklicken gedrückt gehalten, werden die von dem zuerst angeklickten bis zum zweiten angeklickten Bereich markiert. Bei Drücken der STRG/CTRL-Taste können mehrere einzelne Bereiche angeklickt werden.
• **Sonstiges:**

 - *Druckqualität:* Die zur Verfügung stehenden Druckqualitäten sind vom ausgewählten Drucker abhängig. Sie kann nach Klick auf den Pfeil der Auswahlliste gewählt werden.

 - *Kopien:* Anzahl der auszudruckenden Kopien

 - *Druck in Datei:* Wenn diese Option aktiviert ist, wird der Ausdruck in eine Datei umgeleitet. Nach Klicken der Schaltfläche OK wird der Dateinamen abgefragt.

• **Schaltfläche „Drucken“:** Der Druckvorgang über den ausgewählten Drucker wird gestartet.

• **Schaltfläche "Vorschau":** Der Dialog *Druckvorschau* wird in Ganzseitenansicht geöffnet.

siehe Kapitel 9.1.1.4, Abschnitt "Druckvorschau"
Kapitel 9 - Referenz

9.1.1.6 Drucken Bericht
9.1.1.7 Musterdatei

- **Druckbereiche**: Musterdateien zum Ausdruck in CadnaR können durch Druckbereiche strukturiert werden. Die Bezeichnung des Druckbereichs wird vor einem zu kennzeichnenden Abschnitt gesetzt und gilt bis zur nächsten Bereichsbezeichnung. Der Bezeichnung werden zwei Doppelkreuze (##) als Steuerzeichen vorangestellt.

 Beispiel: ##Raumbeschreibung

 zeigt in der Tabelle "Bereiche ausschließen" der Druck-Optionen den Text "Raumbeschreibung" an (Menü Datei|Druck Optionen)

- **Druckbereiche deaktivieren**: Wird eine Bereichskennzeichnung im Dialog Optionen für Ausdruck markiert, wird dieser Bereich nicht ausgedruckt.
Folgende Musterdateien werden mitgeliefert:

<table>
<thead>
<tr>
<th>Dateiname</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUCK_SAK_T_DATEN.TXT</td>
<td>Musterdatei zum Ausdruck der Grafik/Daten der Schallausbreitungskurve und des Nachhallzeit-Diagramms (mit Textformat-Befehlen)</td>
</tr>
<tr>
<td>DRUCK_OBJEKTE.TXT</td>
<td>Musterdatei zum Ausdruck aller Objekttabellen (mit Textformat-Befehlen)</td>
</tr>
<tr>
<td>EXPORT_SAK_T_DATEN.TXT</td>
<td>Musterdatei zum Export der Grafik/Daten der Schallausbreitungskurve und des Nachhallzeit-Diagramms (ohne Textformat-Befehle)</td>
</tr>
<tr>
<td>EXPORT_OBJEKTE.TXT</td>
<td>Musterdatei zum Export aller Objekttabellen (ohne Textformat-Befehle)</td>
</tr>
<tr>
<td>EXPORT_SAK_T_DATEN.RTF</td>
<td>Musterdatei im RTF-Format zum Export der Grafik/Daten der Schallausbreitungskurve und des Nachhallzeit-Diagramms</td>
</tr>
<tr>
<td>EXPORT_OBJEKTE.RTF</td>
<td>Musterdatei im RTF-Format zum Export aller Objekttabellen</td>
</tr>
</tbody>
</table>
9.1.2 Menü Bearbeiten

Mit diesem Befehl (oder der Tastenkombination STRG+Z) können Objekte, die über die ENTF-Taste oder den Kontextmenübefehl Löschen aus der Grafik oder aus einer Tabelle gelöscht wurden, wiederhergestellt werden.

Mit diesem Befehl (oder der Tastenkombination STRG+C) wird - sofern kein einzelnes Objekt markiert ist - die gesamte 2D-Raumdarstellung des Hauptfensters in die Zwischenablage kopiert.

Ist ein einzelnes Objekt markiert, so wird nur dieses Objekt in die Zwischenablage kopiert.

In beiden Fällen kann der Inhalt der Zwischenablage in eine andere Anwendung eingefügt werden.

9.1.3 Menü Berechnung

9.1.3.1 Konfiguration

In diesem Dialog stehen mehrere Registerkarten zur Auswahl des anzuwendenden Berechnungsverfahrens und weiterer Optionen zur Verfügung.

Weitere Details zu diesem Berechnungsverfahren siehe Kapitel 7.1 "Schallteilchen".

Beim kombinierten Verfahren wird bis zu einer einstellbaren Ordnung das Spiegelquellen-Verfahren und oberhalb dieser Ordnung, wiederum bis zu einer einstellbaren Ordnung, das Teilchen-Verfahren angewandt.

Anwendungshinweise zu diesem Hybrid-Verfahren siehe Kapitel 7.1, Abschnitt "Kombiniertes Verfahren „Spiegelquellen --> Teilchen“".

Beim Spiegelquellen-Verfahren wird die Reflexion an Raumbegrenzungsf lächen und an Hindernissen (sowie an reflektierenden Quellen) durch Strahlen abgebildet, deren Strahlweg für jeden Einzelstrahl und für jeden Reflexionspunkt bis zur eingestellten Reflexionsordnung einzeln verfolgt und bestimmt wird. Das Spiegelquellen-Verfahren berücksichtigt die Reflexioneigenschaften von Hindernissen und Raumbegrenzungsf lächen und ist bei beliebig geformten Raumgrundrissen anwendbar. Mit dem Spiegelquellen-Verfahren können Reflexionen bis zur 20. Ordnung berechnet werden.

Weitere Details zu diesem Berechnungsverfahren siehe Kapitel 7.2 "Spiegelquellen".

Das in VDI 3760 festgelegte Verfahren basiert auf dem Spiegelquellenverfahren mit Streuung und Dämpfung nach Kuttruff und Jovicic.

Weitere Details zu diesem Berechnungsverfahren siehe Kapitel 7.3 "Berechnung nach VDI 3760".

Diese Einstellung berechnet die Schalldruckpegel nach der statistischen Nachhall-Theorie. Sie liefert nur dann hinreichend genaue Ergebnisse, wenn im Raum ein diffuses Schalldfeld vorliegt. Ist dies nicht der Fall, so werden die Schalldruckpegel in der Regel überschätzt.

Weitere Details zu diesem Berechnungsverfahren siehe Kapitel 7.4 "Diffusfeld-Verfahren".

Über diese Schaltflächen kann die gewählte Berechnungskombination gespeichert und wieder geöffnet werden (Dateiendung *.cniconf).
Die Einstellungen sind für das "Teilchenmodell" und das kombinierte Verfahren „Spiegelquellen --> Teilchen“ relevant.

- Option „Einstellungen automatisch“ (Standard-Einstellung): Bei aktivierter Option werden folgende Werte verwendet:
 - von Ordnung ... bis einschließlich Ordnung: Ausgehend vom Direktschall (0. Ordnung) werden die Schallteilchen solange verfolgt wie durch die maximale Laufzeit vorgegeben, unabhängig von der erforderlichen maximalen Ordnung.
 - maximale Laufzeit (ms): Im Zuge einer Vor-Berechnung wird auf Basis der Raum- und Objekteigenschaften die maximale Laufzeit abgeschätzt (durch Ermittlung der mittleren freien Weglänge & der mittleren Absorption). Durch Klick auf das Taschenrechner-Symbol kann diese Vor-Berechnung auch ausgelöst werden. Die abgeschätzte maximale Laufzeit wird danach in diesem Feld angezeigt.
 - Teilchenzahl (1. Iteration): Standardmäßig wird eine Teilchenzahl von 100.000 je Iterationsschritt verwendet (siehe „max. Standardabweichung“).
 - maximale Standardabweichung Voxel (dB): Standardmäßig wird eine Standardabweichung von 0.5 dB verwendet. Diese muss für alle Voxel, die sich innerhalb von Rechengebieten und außerhalb von kubischen Objekten befinden, eingehalten sein. Falls nicht, wird eine weitere Iteration ausgeführt.
 Dieses Kriterium kann auch bei aktivierter Option "Einstellungen automatisch" deaktiviert werden und dient in diesem Fall zur Verkürzung der Rechenzeit bei weit entfernten oder mehrfach abgeschirmten Voxeln.
 - maximale Standardabweichung IPKT (dB): Standardmäßig wird eine Standardabweichung von 0.1 dB verwendet. Diese muss für alle aktiven Immissionspunkte eingehalten sein. Falls nicht, wird eine weitere Iteration ausgeführt.
Aus Vergleichsrechnungen folgt, dass die Berechnung der maximalen Laufzeit in 95% der Fälle eine sinnvolle Approximation für kubische Räume mit offenen Raumstrukturen darstellt (d.h. keine komplette Abtrennung einzelner Raumvolumina). Diese Abschätzung ist i.d.R. für Labyrinth-Situationen nicht geeignet.

Bei deaktivierter Option „Einstellungen automatisch“ können folgende Optionen individuell eingestellt werden:

- **von Ordnung**: Hier wird die Ordnung (n+1) angezeigt, von der ausgehend die Berechnung mit dem Teilchen-Modell beim kombinierten Verfahren erfolgt. Bei alleiniger Wahl des Teilchen-Modells ist die Anfangsordnung 0 (Null).

- **bis einschließlich Ordnung**: Hier wird die Ordnung eingestellt, bis zu der die Berechnung mit dem Teilchenmodell durchgeführt wird. Es kann maximal die 500. Ordnung gewählt werden.

- **maximale Laufzeit (ms)**: Bis zu dieser Laufzeit werden die Teilchen, unabhängig von ihrer Reflexionsordnung, bei der Ausbreitung verfolgt und in die Berechnung einbezogen. Die Angabe der maximalen Laufzeit hat den Vorteil, dass alle Teilchen bis zu dieser Grenze im Echogramm enthalten sind, was bei Angabe der maximalen Ordnung nicht der Fall wäre, da Teilchen mit vielen frühen Reflexionen dann nicht zum späten Anteil des Echogramms beitragen würden (Standardwert: 1000 ms = 1 s).

- **Taschenrechner-Symbol**: Bei Klick auf dieses Symbol wird die maximale Laufzeit in einer Vor-Berechnung auf Basis der Raum- und Objekteigenschaften die maximale Laufzeit abgeschätzt (durch Ermittlung der mittleren freien Weglänge & der mittleren Absorption). Die abgeschätzte maximale Laufzeit wird danach in diesem Feld angezeigt.

- **Teilchenzahl (1. Iteration)**: Dies ist die absolute Anzahl an Teilchen, die - verteilt auf alle aktiven Quellen eines Projekts - in der Berechnung je Iteration verwendet wird (Standardwert: 100.000 Teilchen). Die statistische Sicherheit der mit dem Teilchenmodell berechneten Pegel (und der Abklingkurven) hängt von der Anzahl Teilchen ab, die innerhalb eines Zählvolumens (Voxel) einfallen.
• **maximale Standardabweichung Voxel (dB):** Im Zuge der Iteration dient diese Standardabweichung als Abbruchkriterium bei der Pegelberechnung im Raster bzw. im Voxelgitter. Standardmäßig wird eine Standardabweichung von 0.5 dB verwendet. Diese muss für alle Voxel, die sich innerhalb von Rechengebieten und außerhalb von kubischen Objekten befinden, eingehalten sein. Falls nicht, wird eine weitere Iteration ausgeführt.

• **maximale Standardabweichung IPKT (dB):** Im Zuge der Iteration dient diese Standardabweichung als Abbruchkriterium bei der Pegelberechnung an Immissionspunkten. Standardmäßig wird eine Standardabweichung von 0.1 dB verwendet. Diese muss für alle aktiven Immissionspunkte eingehalten sein. Falls nicht, wird eine weitere Iteration ausgeführt.

 água In der Berechnung wird das Kriterium "Maximale Standardabweichung Voxel" nur noch auf "gutmütige" Voxel angewendet. Dies bedeutet, dass Voxel, die durch den Raum, durch Objekte oder Rechengebiete angeschnitten sind, nicht zur Prüfung des Kriteriums herangezogen werden.

 água Für beide Standardabweichungen gilt: Je kleiner der jeweilige Wert ist, desto mehr Iterationen sind erforderlich, bei entsprechender Verlängerung der Rechenzeit.
Diese Einstellungen sind für das Verfahren "Spiegelquellen" und das kombinierte Verfahren „Spiegelquellen --> Teilchen“ relevant:

- **bis einschließlich Ordnung**: Hier wird die Ordnung n eingestellt oder eingegeben, bis zu der die Reflexions- und Abschirmungsrechnung mit durchgeführt wird. Es kann maximal die 20-te Reflexionsordnung gewählt werden.

- *Option „mit vertikaler Beugung“*: Ist diese Option aktiviert, so wird der kürzeste Umweg bei der Hindernisrechnung auf Basis der vertikalen Beugung ermittelt (Beugung über und unter das/die Hindernis/se). Dabei werden auch Umwege in der vertikalen Ebene zwischen Hindernissen berücksichtigt.

- *Option „mit horizontaler Beugung“*: Ist diese Option aktiviert, so wird der kürzeste Umweg bei der Hindernisrechnung auf Basis der horizontalen Beugung ermittelt (Beugung links und rechts um das/die Hindernis/se). Dabei werden auch Umwege in der horizontalen Ebene zwischen Hindernissen berücksichtigt.

Sind beide Beugungs-Optionen aktiviert, so wird sowohl die vertikalen, als auch die horizontale Ebene untersucht.
Es stehen folgende Dialogbereiche zur Verfügung:

Geben Sie hier die bei der Berechnung der Luftabsorption (nach ISO 9613-1) zu berücksichtigende Temperatur (in °C) und relative Feuchte (in %) ein. Die Standardwerte sind eine Temperatur von 20°C und eine relative Feuchte von 60%.

Wählen Sie hier die Unter- und Obergrenze des in der Berechnung zu berücksichtigenden Frequenzbereichs aus.

Diese Option steht für alle Berechnungsverfahren - außer für das Teilchenmodell - zur Verfügung.

Ist eine Einstellung n*n gewählt, so wird im ersten Schritt nur an jedem (n+1)-ten Punkt von den im Menü **Raster|Spezifikation** festgelegten Punkten sowie am Mittelpunkt jedes von 4 dieser Punkte begrenzten Rechtecks der Pegel berechnet. Wenn eine der im folgenden genannten
Bedingungen für ein durch 4 Punkte begrenztes Viereck nicht erfüllt ist, wird dieses Viereck in vier gleich große Vierecke unterteilt und es wird für jedes dieser 4 Vierecke dieselbe Prüfung nochmals durchgeführt. Ist eine dieser Bedingungen weiterhin verletzt, so erfolgt rekursiv eine weitere Unterteilung, bis die Bedingung letztlich erfüllt ist oder alle Punkte gemäß der Rasterspezifikation in die Berechnung einbezogen sind. Die Bedingungen sind:

- **Max. Differenz Eckpunkte (dB):** Die Differenz zwischen dem höchsten und dem niedrigsten der an den 4 Eckpunkten berechneten Pegel ist höchstens gleich dem festgelegten Maximalwert (Standardwert: 10 dB).

- **Max. Differenz Mittelpunkt (dB):** Der Mittelwert der für die beiden Endpunkte einer Rechteckdiagonale berechneten Pegel unterscheidet sich von dem für den Mittelpunkt berechneten Pegelwert höchstens durch die festgelegte maximale Abweichung (Standardwert: 0.1 dB). Dies muss für beide Diagonalen erfüllt sein.

Sind die Bedingungen erfüllt, so stimmen innerhalb des Rechtecks die interpolierten mit den tatsächlichen Werten hinreichen gut überein und die Pegel an den restlichen Punkten innerhalb des Rechtecks werden durch lineare Interpolation aus den für die 4 Eckpunkte berechneten Pegeln bestimmt.
Wenn als Berechnungsverfahren "VDI 3760" gewählt ist (siehe Registerkarte "Berechnung") stehen folgende Dialogbereiche zur Verfügung:

Das Abbruchkriterium bestimmt, bis zu welcher Ordnung die Spiegelquellen in die Berechnung des Reflexionsschalls einbezogen werden.

- **nach VDI 3760**: Das Abbruchkriterium nach VDI 3760 stellt unabhängig von den Raumparametern sicher, dass die anteiligen Pegel des Raumschallfeldes mit einer Genauigkeit von 0,5 dB berechnet werden.

- **näherungsweise**: Dieses Abbruchkriterium stellt eine Weiterentwicklung des VDI 3760-Kriteriums dar und führt ebenso wie dieses zu einer Genauigkeit von ca. 0,5 dB bei verkürzter Rechenzeit.

Die äquivalente Absorptionsfläche A und somit die Nachhallzeit T wird - unabhängig vom eingestellten Berechnungsverfahren - nach dem gewählten statistischen Verfahren berechnet:

- **nach Sabine**: Es kann gewählt werden, ob die Luftdämpfung berücksichtigt werden soll oder nicht.

- **nach Eyring**: Die Luftdämpfung wird stets berücksichtigt.
• **Streukörperabsorption einbeziehen**: Ist dieser Punkt aktiviert, wird in die Absorption durch Streukörper bei der Berechnung der äquivalenten Absorptionsfläche berücksichtigt. Die Eingabe der Streukörperdichte erfolgt im Dialog **Raumdaten** (siehe Kapitel 9.1.4.2).

• **Luftabsorption einbeziehen**: ist bei Berechnung der äquivalenten Absorptionsfläche nach Sabine verfügbar

Das hier eingetragene oder ausgewählte Bezugsspektrum wird von **CadnaR** bei der Berechnung der Schallausbreitungskurve "Gesamt" aus den Kurven der einzelnen Frequenzbänder zugrundegelegt.

- Die Oktavwerte 31 Hz, 63 Hz und 8000 Hz sind zur Kennzeichnung der Schallausbreitungskurve "Gesamt" nicht relevant.

- **Bezugsspektrum "VDI 3760 Standard"**: In VDI 3760 ist als Bezugspektrum ein A-bewertetes Rosa Rauschen vorgegeben. Dies ist die zu verwendende Einstellung bei der Berechnung der Schallausbreitungsgrößen (DL2, DLf).

- **Nutzerdefiniertes Bezugsspektrum**: Ist das in einem Raum vorhandene dominierende "Quellspektrum" bekannt, können auch dieses als Oktav-Bezugspiegel verwendet werden. Klicken Sie zur Eingabe auf das Dateiauswahlsymbol und geben Sie über den Kontextmenübefehl **Einfügen vorher/nachher** das unnormierte Bezugsspektrum ein. In beiden Fällen berechnet **CadnaR** aus diesen Pegeln ein normiertes Bezugsspektrum. So kann z.B. die Schallausbreitungskurve - bezogen auf den Gesamtpegel in dB(A) - für eine Quelle mit beliebigem Frequenzspektrum ermittelt werden.
Kapitel 9 - Referenz
9.1.3.1 Konfiguration

Registerkarte „Teilchenmodell“

Es bestehen zusätzliche Optionen für das Teilchenmodell und für den Anteil des Teilchenmodells bei Anwendung des kombinierten Verfahrens (Spiegelquellen --> Teilchen).

Alle nachfolgend aufgeführten Optionen sind standardmäßig deaktiviert.

Ist diese Option aktiviert, so wird der Streugrad von Hindernisobjekten in der Berechnung nicht berücksichtigt. Dies gilt auch, wenn für Hindernisse Streugrade eingegeben oder aus den lokalen/globalen Bibliotheken Streugrade referenziert wurden.

Ist diese Option aktiviert, so wird der Transmissionsgrad von Hindernisobjekten in der Berechnung nicht berücksichtigt. Dies gilt auch, wenn für Hindernisse Transmissionsgrade eingegeben oder aus den lokalen/globalen Bibliotheken Schalldämmungen referenziert wurden.

Wenn diese Option aktiviert ist, wird für jedes Oktavband des eingestellten Frequenzbereichs die gleiche Anzahl Schallteilchen erzeugt. Dadurch erhöht sich die Rechenzeit um einen Faktor entsprechend der Oktavenanzahl gegenüber dem Fall ohne Aktivierung dieser Option. Die bandweise Erzeugung der Teilchen hat den Vorteil, dass dann die frequenzabhängigen...

- **Richtwirkung über Teilchenzahl:** Diese Option steht nur zur Verfügung, wenn die Option "Teilchen je Oktave erzeugen" aktiviert wurde.

 Wird zusätzlich diese Option aktiviert, so wird die Richtwirkung bei Punktquellen über eine vom jeweiligen Richtwirkungsmaß abhängige Teilchenzahl in die Berechnung einbezogen. In diesem Fall haben alle ausgesandten Teilchen die gleiche Energie. Bei hohem Richtwirkungsmaß werden mehr Teilchen in diese Richtung ausgesandt, als bei niedrigem Richtwirkungsmaß.

 Ist die Option hingegen deaktiviert, wird die Richtwirkung von Punktkquellen im Teilchenmodell oder im entsprechenden Anteil des kombinierten Verfahrens durch Variation der Teilchenenergie berücksichtigt. In diesem Fall werden in alle Richtungen gleich viele Teilchen, aber mit unterschiedlicher Energie ausgesandt.

Diese Option gestattet es, für die Raumbegrenzungsflächen (Boden/Wände/Decke) einen globalen Streugrad einzugeben, der bei Berechnungen nach dem Teilchenmodell verwendet wird.

- Bisher konnten die Raumbegrenzungsflächen lediglich schallabsorbierende Eigenschaften aufweisen (siehe Kapitel 9.1.4.2). Ohne Berücksichtigung eines Streugrades können jedoch in einer Vielzahl von realen Situationen die messtechnisch festgestellten Nachhallzeiten nicht ausreichend genau abgebildet werden.

Standardmäßig wird ein Streugrad von 0.2 (20%) bei neuen Projekten verwendet. Beim Laden von Projekten aus früheren CadnaR-Versionen wird hingegen ein Streugrad von 0 eingestellt, um sicherzustellen, dass bei Neuberechnung die Ergebnisse nicht abweichen.
Nachfolgende Optionen stehen nur dann zur Verfügung, wenn als Berechnungsverfahren „Spiegelquellen“, „Teilchen“ oder das kombinierte Verfahren „Spiegelquellen --> Teilchen“ gewählt ist.

Nach Aktivierung der Option „für Immissionspunkte“ und ggf. zusätzlich „für Raster“ werden bei einer nachfolgenden Neuberechnung die Echogramme bzw. Abklingkurven und die ausgewählten raumakustischen Gütemaße für alle aktiven Immissionspunkte und ggf. auf dem Raster (für die eingestellte Rasterhöhe, siehe Kapitel 9.1.5.1) berechnet.

- **Offset (ms):** Durch den Offset wird festgelegt, ab welchem Zeitpunkt die Aufzeichnung der Echogramme beginnt. Bei einem Offset von 0 ms bestimmt sich die Laufzeit ab dem Zeitpunkt der Emission an der Quelle (Standardwert: 0 ms).

- **Klassenbreite (ms):** Die Klassenbreite legt fest, welche Zeitintervalle bei der Erzeugung der Echogramme und Abklingkurven verwendet werden. Ein kleiner Wert erfordert mehr Speicherplatz und verlängert ggf. die Rechenzeit für die Auswertung. Ein großer Wert verringert den Speicherbedarf führt aber u.U. zu einer zu "groben" Abklingkurven zur Auswertung der Nachhallzeiten (Standardwert: 10 ms)
Option „fein (empfohlen)“: Diese Option steht nur dann zur Verfügung, wenn auf der Registerkarte „Berechnung“, Bereich „Teilchen“ (siehe oben), eine maximale Laufzeit als Abbruchkriterium eingegeben wurde. In diesem Fall richtet sich die hier verwendete Anzahl Klassen nach der eingegebenen maximalen Laufzeit bei einer Klassenbreite von 1 ms.

- **Anzahl Klassen**: In Verbindung mit der Klassenbreite bestimmt die Anzahl die Länge des betrachteten Zeitfensters (Standardwert: 200).

Das Produkt aus Klassenbreite und Klassenanzahl sollte ausreichend groß sein, um ein ausreichend großes Zeitfenster zur Ermittlung der raumakustischen Gütemaße sicherzustellen (Standardlänge des Zeitfensters: 2 s). Diese zeitliche Obergrenze hängt auch von den maximal erwarteten oder zu berücksichtigenden Laufzeiten ab.

Störpegel für STI/STIPA-Berechnung

In diesem Dialogbereich wird das bei der STI- bzw. STIPA-Berechnung zu verwendende Störpegelspektrum eingegeben bzw. ausgewählt. Es stehen folgende Optionen zur Verfügung:

- **ohne Störpegel**: Die STI/STIPA-Berechnung erfolgt ohne Berücksichtigung eines Störpegels.

- **Referenzieren eines Störpegelspektrums**: Klicken Sie auf das Dateiauswahlsymbol, um ein Störpegelspektrum aus der globalen Bibliothek Störpegel auszuwählen (siehe Kapitel 9.1.7.6, Abschnitt "Störpegel (global)"). In diesem Fall wird das gewählte Spektrum in der STI/STIPA-Berechnung für alle aktiven Immissionspunkte als Störpegel verwendet.

- **verwende Immissionspegel aus Variante**: Wählen Sie eine der aktiven Varianten aus, die die Ergebnisse einer Störpegel-Berechnung an den Immissionspunkten enthält. Dann werden die Immissionspegel aus der gewählten Variante in der STI/STIPA-Berechnung als Störpegel verwendet.

- **verwende Störpegel aus Raster**: Über diese Option kann ein gespeichertes Raster als Störpegelraster geladen werden. Dazu muss vorher ein Störpegelraster als ASCII-Raster (*.rst) gespeichert werden (siehe Kapitel 9.1.5.5).
Wählen Sie hier die aus den Abklingkurven zu bestimmenden Gütemaße aus. Diese Auswahl gilt nur für die Berechnung der Gütemaße an Immissionspunkten; für Rasterpunkte werden immer alle Gütemaße für die eingestellte Rasterhöhe unabhängig von der hier getroffenen Auswahl berechnet (siehe Kapitel 9.1.5.3).

Es stehen Listenfelder für spektrale Gütemaße und für Einzahlwerte zur Verfügung. Zur Auswahl können die Windows-üblichen Optionen zur Mehrfachauswahl verwendet werden.

- **spektrale Gütemaße:**
 - T30 (Nachhallzeit bei 30 dB Abfall, in s)
 - T20 (Nachhallzeit bei 20 dB Abfall, in s)
 - T10 (Nachhallzeit bei 10 dB Abfall, in s)
 - EDT (Anfangsnachhallzeit/Early Decay Time, in s)
 - D50 (Deutlichkeitsgrad od. Deutlichkeit, ohne Einheit)
 - C50 (Deutlichkeitsmaß für Sprache, in dB)
 - C80 (Klarheitsmaß für Musik, in dB)
 - TS (Schwerpunktzeit, in s)

- **Einzahlwerte:**
 - ALcons%_2k (Artikulationsverlust für Konsonanten bei 2000 Hz, in %)
 - ALcons%_500-2k (Artikulationsverlust für Konsonanten, Mittelwert 500-2000 Hz, in %)
 - STI_male (Speech Transmission Index nach IEC 60268-16, für männliche Sprecher)
 - STI_female (Speech Transmission Index nach IEC 60268-16, für weibliche Sprecher)
 - STIPA_IR (Speech Transmission Index for Public Address Systems nach IEC 60268-16)
 - CIS (Allgemeine Verständlichkeitsskala/Common Intelligibility Scale)
Nach erfolgter Berechnung werden die Ergebnisse für die ausgewählten Gütemaße als Textvariablen in das Info-Fenster der Immissionspunkte geschrieben (siehe Kapitel 5.9).

Details zu den einzelnen raumakustischen Gütemaßen siehe Kapitel 7.5.
9.1.3.2 Protokoll

Mit dem Befehl **Protokoll** kann eine Protokolldatei im ASCII-Format geschrieben werden, die alle Zwischenergebnisse einer Berechnung an Immissionspunkten enthält. Diese Datei kann in andere Anwendungen importiert werden (z.B. nach MS-Excel oder MS-Word).

Aktivieren Sie die Option "Schreibe Protokoll" und starten Sie erneut die Berechnung an Immissionspunkten. Öffnen Sie wieder den Dialog **Protokoll** und klicken Sie die Schaltfläche "Auswählen". Standardmäßig wird der Dateiname **cadnar.log** verwendet.

Um einen anderen Namen zu vergeben, klicken Sie diese Schalterfläche und geben Sie den gewünschten Dateinamen ein. Standardmäßig wird die Protokolldatei in das **CadnaR**-Installationsverzeichnis geschrieben. Es kann auch ein anderer Dateipfad verwendet werden. Danach wird das Protokoll unter diesem Namen abgelegt. Alternativ können Sie eine bereits vorhandene Datei auswählen und überschreiben.

Nach Klick auf die Schaltfläche wird die Protokolldatei der letzten Berechnung an Immissionspunkten angezeigt. Sollte der Texteditor eine Meldung anzeigen, dass die Datei nicht angezeigt werden kann, ist die Protokolldatei für den gewählten Editor zu groß. Verwenden Sie ein anderes Programm - z.B. ein Tabellenkalkulations- oder Textverarbeitungsprogramm - das in der Lage ist, ASCII-Formate zu lesen.
Beim aktivierten Option "Datei überschreiben" enthält die Protokolldatei nur die Daten der letzten Berechnung. Bei aktivierter Option "an Datei anhängen" werden die Daten an die vorhandenen Daten in der gewählten Protokolldatei angehängt.

Protokoll-Abkürzungen

Das Protokoll enthält folgende Angaben:

- Dateikopf (CadnaR-Version, Dateipfad, Berechungsstart)
- Konfigurations-Einstellungen
- für jede Immissionspunkt: Bezeichnung und Koordinaten xyz
- für jede am Immissionspunkt beitragende Quelle:
 - Quellbezeichnung und Quelltyp (Punkt-, Linien-, Flächenquelle, vert. Flächenquelle, Quaderquelle)
 - LwA: A-bewerteter Schalleistungspegel der Quelle in dB(A)
 - Strahlordnung, Quellkoordinaten xyz, 3D-Abstand (m)
 - Angabe, ob gebeugter oder ungebeugter Strahl
 - Umweg: Weglängendifferenz gebeugter Strahl - Direktstrahl (m)
 - e: Abstand von erster zur letzten Beugungskante (m)
- für alle Oktaven:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lx</td>
<td>Schallleistungspegel der Teilquelle</td>
</tr>
<tr>
<td>L/A</td>
<td>Länge/Fläche (m oder m²)</td>
</tr>
<tr>
<td>Dc</td>
<td>Richtwirkungskorrektur</td>
</tr>
<tr>
<td>Adiv</td>
<td>Dämpfung durch geometrische Divergenz</td>
</tr>
<tr>
<td>Aatm</td>
<td>Dämpfung durch Luftabsorption</td>
</tr>
<tr>
<td>Abar</td>
<td>Abschirmdämpfung</td>
</tr>
<tr>
<td>RV</td>
<td>Reflexionsverlust</td>
</tr>
<tr>
<td>Lp_dir</td>
<td>Pegel aus Strahlverfolgung</td>
</tr>
</tbody>
</table>
- A-bewerteter Summenpegel pro Quelle in dB(A)
- \(L_{p_dir_tot} \): Gesamtpegel aus Strahlverfolgung (ausgehend von allen Quellen)
- \(L_{p_particle} \): Pegel aus dem Partikel Model ausgehend von allen Quellen (falls Fallback aktiviert, ansonsten Null)
- \(L_{p_tot} \): Gesamtpegel ausgehend von allen Quellen
Kapitel 9 - Referenz

9.1.3.2 Protokoll
9.1.3.3 SAK/T berechnen

Bei Auswahl dieses Befehls (oder alternativ durch Klick auf das Symbol auf der Symbolleiste des Dialogs Diagramme, siehe Kapitel 9.1.4.3) wird die Berechnung der Schallausbreitungskurve und der Nachhallzeit auf Basis der aktuellen Raumdaten gestartet.

9.1.3.4 Immissionspunkte berechnen

Beim Anklicken des Taschenrechnersymbols auf der Symbolleiste werden die Pegel an den Immissionspunkten (siehe Kapitel 5.9) der aktuell gewählten Variante berechnet.

Im Gegensatz dazu wird bei Auswahl des Befehls Immissionspunkte berechnen aus dem Menü Berechnung der Dialog Berechnen angezeigt, falls mehr als eine Variante definiert ist. Abhängig von der hier getroffenen Einstellung werden berechnet:

• nur die aktuelle Variante
• alle Varianten
• eine Auswahl an Varianten

Vorher werden die Objektdaten einer Konsistenzprüfung (siehe Kapitel 9.1.3.7) unterzogen.
Dieser Befehl steht getrennt von der Berechnung der Schallausbreitungskurve/Nachhallzeit zur Verfügung (siehe oben). Die Trennung beider Berechnungsaufgaben ermöglicht, auch auf Basis einer importierten Schallausbreitungskurve die Schalldruckpegel an Immissionsorten zu berechnen (siehe Kapitel 9.1.4.3 "Diagramme (SAK/T)", Abschnitt "Import Pfad").

Die eingestellte Berechnungskonfiguration gilt für alle zu berechnenden Varianten. Es können nicht verschiedene Berechnungskonfigurationen mit bestimmten Varianten verknüpft werden.

In einer Datei mit vielen Varianten wird aus Gründen des beschränkten Speicherplatzes nur das Immissionspunktraster der aktuell gewählten Variante berechnet und gespeichert. Verwenden Sie bei Rasterberechnungen für verschiedene Varianten die Befehle Speichern und Öffnen im Menü Raster.

9.1.3.5 Immissionspunkketten berechnen

Bei Auswahl dieses Befehls wird die Berechnung der Schalldruckpegel an den Immissionspunkten aller IP-Ketten gestartet. Zuvor erfolgt eine Konsistenzprüfung (zu beidem siehe Kapitel 5.11).

Es werden der A-bewertete Pegel und ggf. der Sprachübertragungsindex (STI) für jede Immissionspunktkette getrennt und bei alleiniger Emission der in Bezug genommenen Punktquelle berechnet (zu weiteren Details der Berechnung siehe Kapitel 5.11, Abschnitt "Berechnung").
9.1.3.6 Freifeld-Simulation berechnen

Diese Berechnungsoption ermöglicht, für eine ausgewählte Quellgruppe die Berechnung der Immissionspegel an allen zugehörigen aktiven Immisionspunkten unter Halb-Freifeld-Bedingungen durchzuführen, ohne vorher den Raum bzw. die Raumbegrenzungsflächen umzurüsten (auf voll-absorbierende Wände und reflektierenden Boden).

Bei der Bearbeitung von Projekten mit Maschinen besteht regelmäßig der Bedarf, eine der normativen Messumgebung entsprechende Berechnung unter Halb-Freifeld-Bedingungen durchführen zu können. Dies ist - zum Beispiel - dann der Fall, wenn nur gemessene Schalldruckpegel L_{pA} an Immissionspunkten in Maschinennähe vorliegen, der zugehörige Schallleistungspegel L_{WA} aber unbekannt ist. In derartigen Fällen muss der zur Kennzeichnung verwendete Schallleistungspegel L_{WA} der Maschine/n oder Anlagenteile unter Verwendung geeigneter Methoden geschätzt werden. Anschließend kann mit Hilfe dieser Freifeld-Simulation untersucht werden, ob die gemessenen Schalldruckpegel L_{pA} in Maschinennähe mit den berechneten (ggf. näherungsweise) übereinstimmen.

Folgende Schritte sind erforderlich:

- Die Teilquellen, aus denen das Maschinenmodell besteht, und die zugehörigen Messpunkte (Immissionspunkte) in der Nähe der Maschine müssen sich innerhalb einer Gruppe befinden. Am einfachsten lässt sich dies über den ObjectTree von CadnaR realisieren (siehe Kapitel 8.1.2).

- Falls mehrere Maschinen in der Projektdatei vorhanden sind, muss jede Maschine sich in einer separaten Gruppe (einschl. der zugehörigen Mess- bzw. Immissionspunkte) befinden.

- Nach Auswahl dieses Befehls wird der Dialog Berechnung Freifeld-Simulation geöffnet, der die Auswahl einer im ObjectTree definierten Quellgruppe ermöglicht.
9.1.3.6 Freifeld-Simulation berechnen

Dialog **Berechnung Freifeld-Simulation**

- Klicken Sie auf das ObjectTree-Symbol um in den Dialog **Select** zu gelangen.
- Wählen Sie dort eine vorab definierte Quellgruppe aus.
- Nach Klick auf OK wird die Freifeld-Simulation gestartet. Die Ergebnisse werden in den der Quellgruppe zugeordneten Immissionspunkten angezeigt.
- Durch erneute Auswahl einer Gruppe kann sukzessive die Freifeld-Simulation für alle vorhandenen Quellgruppen durchgeführt werden.
9.1.3.7 Konsistenzprüfung

Vor der Berechnung des Schallpegels an Immissionspunkten und/oder vor der Berechnung des Rasters werden die Eingaben automatisch auf Konsistenz geprüft. Die Konsistenzprüfung beinhaltet:

- bei Immissionspunkten: Option "Immissionspunkt ist Arbeitsplatz bei Schallquelle" aktiviert, aber keine Quelle zugewiesen, und $L_{pA} > 0$ dB(A)
- bei allen Objekten: Punkte oder Polygonpunkte innerhalb des Raumes
- bei Linienquellen: 3D-Länge > 0 m
- bei Flächenquellen: Grundfläche > 0 m²
- bei Quaderquellen und Hindernisquadern: Höhe > 0 m, Grundfläche > 0 m²
- bei Schirmen und vertikalen Flächenquellen: 2D-Länge > 0 m, Höhe > 0 m
- bei Hindernissen: Prüfung der spektralen Vollständigkeit von Absorptions-, Transmissions-, Streugradspektrum (in Bezug auf den eingestellten Frequenzbereich)
- bei Hindernissen: Bei vorhandenen frequenzabhängigen Streu- und Transmissionsgraden/Dämmungen und deaktivierter Option „Teilchen je Oktave erzeugen“ (siehe Kapitel 9.1.3.1 "Konfiguration", Registerkarte „Teilchenmodell“) wird eine Meldung angezeigt („Streuung/Transmission gemittelt“).
- Prüfung der spektralen Vollständigkeit in Bezug auf die in der Konfiguration, Registerkarte „RIA-Auswertung“, eingestellten raumakustischen Parameter (siehe Kapitel 9.1.3.1 "Konfiguration“)

Gegebenenfalls werden der Objekttyp und die Bezeichnung innerhalb des Dialogs Konsistenzprüfung angezeigt.
Dialogoptionen

Editieren von Objekten
Zum Editieren doppelklicken Sie in eine Zeile der Liste, um den jeweiligen Objektdialog zu öffnen. Alternativ kann eine Zeile markiert und die Schaltfläche "Editieren" geklickt werden.

Synchronisiere Grafik
Bei Klick auf diese Schaltfläche wird die Grafik auf des gewählte Objekt zentriert. Alternativ kann mit gedrückter SHIFT-Taste auf die Objektzeile geklickt werden.

Schaltfläche "Weiter"
setzt die Berechnung fort

Schaltfläche "Abbruch"
bricht die Berechnung ab
9.1.4 Menü Eigenschaften

9.1.4.1 3D-Ansicht

Über diesen Befehl (oder die Schaltfläche auf der Symbolleiste) wird die dreidimensionale Darstellung des Raumes mit den darin vorhandenen Objekten aufgerufen. Alternativ kann mit der Tastenkombination STRG+3 zwischen der 2D-Raumdarstellung und der 3D-Ansicht hin- und hergeschaltet werden.

Die 3D-Raumansicht kann mit der Maus gedreht, verschoben oder gezoomt werden:

- zum Drehen des Raumes: linke Maustaste gedrückt halten und Maus nach oben/ unten oder links/rechts bewegen (oder über die Zahlentasten 4, 6, 2, 8, und Taste 5 für 2D-Projektion von oben)
- zum Verschieben des Raumes in x- oder y-Richtung: STRG-Taste und linke Maustaste gedrückt halten und Maus nach oben/ unten oder links/ rechts bewegen
- zum Zoomen des Raumes: rechte Maustaste gedrückt halten und Maus vor/zurück bewegen
Bei Verwendung der Maus stehen folgende Befehle in der 3D-Ansicht zur Verfügung:

- Doppelklick auf ein Objekt in der 3D-Ansicht öffnet den entsprechenden Objektdialog.
- Selektierte Objekte können bei gedrückter STRG-Taste mit den Pfeiltasten in X-, Y- oder Z-Richtung verschoben werden (x, y: STRG + Pfeiltaste, z: STRG + Bild auf/ab: Verschiebung um 1 cm, STRG + SHIFT + Pfeiltaste, Bild auf/ab: Verschiebung um 10 cm).

Menübefehle

Schließen

Schließt die 3D-Ansicht unmittelbar

Menü Darstellung | Eigenschaften 3D-Ansicht

Darüber hinaus bestehen folgende weiteren Optionen:

<table>
<thead>
<tr>
<th>Option</th>
<th>Bedeutung</th>
<th>Standardwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punktgröße</td>
<td>relatives Größenmaß für Punkte</td>
<td>5.0</td>
</tr>
<tr>
<td>Liniendicke</td>
<td>relatives Größenmaß für Linien</td>
<td>1.0</td>
</tr>
<tr>
<td>Drehgeschw. (°/s)</td>
<td>relevant bei Drehungen des Raumes</td>
<td>30.0</td>
</tr>
<tr>
<td>Gesichtsfeld (°)</td>
<td>Winkelbereich des gesehenen Bereichs (in der Horizontalebene)</td>
<td>45 Grad</td>
</tr>
</tbody>
</table>
| Entfernungsbereich: | Dieser definiert den sichtbaren Bereich in Blickrichtung (Beginn der nahen Ebene bis zur fernen Ebene, d.h. dem Horizont). Abhängig von der verwendeten Grafikkarte sind ggf. andere Einstellungen notwendig (Bedingung: beide Werte > 0 m). Vergrößern Sie z.B. den Wert der nahen Ebene und verkleinern Sie den Wert der fernen Ebene. | nah: 0.50 m
fern: 10000.00 m |
| Antialiasing | Das Anti-Alaising-Verfahren bestimmt das Verfahren zur Kantenglättung bei der 3D-Darstellung. | Multi-Sampling 16x (PF 56) |
| Stereo 3D: | • keine 3D-Stereo-Darstellung | aus |
| | • Teilbilder nebeneinander | |
| | • Teilbilder übereinander | |
| |
Hinweis: Bei Verwendung eines externen 3D-Monitors muss dieser zur korrekten 3D-Stereo-Bild-Darstellung entsprechend eingestellt sein. |

wendet die aktuellen Einstellungen unmittelbar an, ohne dass dazu das Dialogfenster geschlossen werden muss.

Schaltfläche „Anwenden“
Zeigt Informationen zur verwendeten OpenGL-Grafikkarte an. Diese Informationen können im Fall fehlerhafter Anzeige bei der Ursachensuche hilfreich sein.

Weiterhin stehen im Menü **Darstellung** folgende Funktionalitäten zur Verfügung:

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>Optionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>Dialog Eigenschaften anzeigen</td>
<td>siehe Abschnitt am Anfang dieses Kapitels</td>
</tr>
<tr>
<td>F9</td>
<td>OpenGL-Info</td>
<td>siehe Abschnitt am Anfang dieses Kapitels</td>
</tr>
<tr>
<td>F7</td>
<td>Vollbild anzeigen</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>Stereoskopisches 3D</td>
<td>Folgende Optionen werden zyklisch durchgeschaltet:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• links-rechts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• oben-unten</td>
</tr>
<tr>
<td>Q</td>
<td>Quellen anzeigen an/aus</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Hindernisse anzeigen an/aus</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Immissionspunkte anzeigen an/aus</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Absorptionsflächen anzeigen an/aus</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3D-Symbole anzeigen</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Lageplan als Bodentextur anzeigen an/aus</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Darstellung der Richtwirkung von Punktquellen ändern</td>
<td>Folgende Optionen werden zyklisch durchgeschaltet:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Richtungsvektoren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3D-Kugel grob</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3D-Kugel fein</td>
</tr>
</tbody>
</table>
Kapitel 9 - Referenz
9.1.4.1 3D-Ansicht

<table>
<thead>
<tr>
<th>Tastenkombination</th>
<th>Funktion</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| SHIFT + G | Darstellung von ObjectTree-Gruppen | Folgende Optionen werden zyklisch durchgeschaltet:
 - aus: keine Darstellung
 - selektiert: Nur die ausgewählte Gruppe wird angezeigt.
 - alle: Es werden alle vorhandenen Gruppen angezeigt. |
| K | Koordinatensystem anzeigen an/aus | - |
| G | Legende anzeigen | - |
| W | Drahtgitter-Darstellung an/aus | Folgende Optionen werden zyklisch durchgeschaltet:
 - aus
 - Raum
 - Objekte
 - Raum und Objekte |
| B | Hintergrundfarbe ändern | Folgende Optionen werden zyklisch durchgeschaltet:
 - Schwarz
 - Weiß
 - Blau |
Kapitel 9 - Referenz

9.1.4.1 3D-Ansicht

| R | Rasterdarstellung ändern | Folgende Optionen werden zyklisch durchgeschaltet:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rasterpunkte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Isolinien</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rasterpunkte und Isolinien</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rasterpunkte (Höhe = Pegel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Isolinien (Höhe = Pegel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flächenraster, transparent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flächenraster, opak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bei den Darstellungsarten „Rasterpunkte (Höhe=Pegel)“ und „Isolinien (Höhe=Pegel)“ wird für die Ordinate der Darstellungsbereich des Rasters verwendet (siehe Kapitel 9.1.5.2 "Rasterdarstellung"). Die an den vier Raumecken angezeigten Ordinatenachsen weisen bei einem Pegelbereich (\leq 50 \text{ dB}) einen Teilstrichabstand von 5 dB und bei einem Pegelbereich (> 50 \text{ dB}) einen solchen von 10 dB auf. Zudem wird der Pegelbereich der 3D-Ansicht auf dessen Titelleiste angezeigt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Voxelgitter-Ebenen ein-/ausblenden</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y, Z</td>
<td>Voxelgitter-Ebenen in x-, y-, z-Richtung verschieben</td>
<td>-</td>
</tr>
</tbody>
</table>

| L | 3D ISO-Flächen an/aus | Folgende Optionen werden zyklisch durchgeschaltet:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Drahtgitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Für die Darstellung des 3D-Drahtgitters wird der Darstellungsbereich des Rasters verwendet (siehe Kapitel 9.1.5.2 "Rasterdarstellung"). Diese Option steht nur zur Verfügung, wenn ein Voxelgitter berechnet wurde.</td>
</tr>
</tbody>
</table>
Kapitel 9 - Referenz
9.1.4.1 3D-Ansicht

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Funktion</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Teilchen-Pingpong an/aus</td>
<td>(erfordert zunächst die Aktivierung der Option „Teilchen-Visualisierung“, siehe Kapitel 9.1.4.11)</td>
</tr>
<tr>
<td></td>
<td>Es stehen folgende Unterfunktionen zur Verfügung:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Teilchen vergrößern/verkleinern: +/-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Teilchen-Pingpong anhalten/fortsetzen: LEERTASTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Teilchen-Geschwindigkeit erhöhen/vermindern: Taste E/Shift+E</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Teilchenfarbe aus Frequenzband</td>
<td>In diesem Fall werden die Rasterfarben je Oktave vergeben, ansonsten auf Basis des Pegels.</td>
</tr>
<tr>
<td>U</td>
<td>Teilchenspur anzeigen an/aus</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>Strahlen für berechnete Immissionspunkte anzeigen an/aus</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>Ordnung der anzuzeigenden Strahlen ändern (alle, Ordnung 1 bis 10, ++)</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>Typ der anzuzeigenden Strahlen ändern</td>
<td>Folgende Optionen werden zyklisch durchgeschaltet:</td>
</tr>
<tr>
<td></td>
<td>• alle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ungebeugt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• gebeugt</td>
<td></td>
</tr>
</tbody>
</table>

sowie:

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Funktion</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>automatische Rotation der 3D-Ansicht um die z-Achse an/aus</td>
<td>-</td>
</tr>
<tr>
<td>F4</td>
<td>erzeugt Screenshot und öffnet den Dialog Speichern unter...</td>
<td>-</td>
</tr>
<tr>
<td>F11</td>
<td>Anti-Alasing an/aus</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>Rasterpunkte vergrößern</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Rasterpunkte verkleinern</td>
<td>-</td>
</tr>
</tbody>
</table>
Menü Kamera

- **Preset laden**: Falls Presets für Kamerapositionen gespeichert wurden, sind diese hier auswählbar. Nachdem ein Preset gewählt wurde, wird die Ansichtsposition unmittelbar aktualisiert.

- **Preset speichern**: Es können bis 4 Presets für Kamerapositionen gespeichert werden. Wählen Sie ein Preset aus, um die aktuelle Ansichtsposition in diesem Preset zu speichern.

- **alle Presets löschen**: macht genau das!

- **aktuelle Ansicht auf Standardwerte zurücksetzen (Taste 0 (Null))**: macht auch genau das!

Menü Video

- **Aufnahme initialisieren (Taste [Pos1])**: fordert zur Eingabe eines Dateinamens (*.avi) in einem Verzeichnis auf. Anschließend wird ein Dialog zur Auswahl des Videokompressionsverfahrens angezeigt. Wählen Sie ein Verfahren aus und schließen Sie den Dialog mit OK.

- **Aufnahme starten (Taste [Pos1])**: Bei Auswahl des Befehls wird die Aufzeichnung gestartet. Danach werden alle in der 3D-Ansicht ausgeführten Bewegungen aufgezeichnet.

- **Aufnahme stoppen (Taste [Ende])**: Durch Auswahl dieses Befehls wird die Aufnahme angehalten.

- **Aufnahme abschließen [Ende]**: Bei Auswahl dieses Befehls wird die Videodatei in das Zielverzeichnis geschrieben.

Beachten Sie noch folgende Hinweise zur Video-Aufzeichnung:

- **Die Aufzeichnung arbeitet im interaktiven Modus.** Das bedeutet, dass Sie sich - während die Aufnahme läuft - durch den Raum unter Verwendung der üblichen Tastatur- oder Maustasten bewegen können. Es wird also kein vorgegebener Kamerapfad abgefahren.

- **Eine Aufnahme kann angehalten und wieder fortgesetzt werden, solange die Größe der 3D-Ansicht nicht verändert wird.**

- **Es können auch stereoskopische 3D-Videos aufgenommen werden.**

- **Es können Vollbild-Videos aufgenommen werden, sofern Tastaturbefehle benutzt werden.**

Menü Hilfe

zeigt den Hilfe-Text an
9.1.4.2 Raum

Der Dialog Raumdaten dient zur Eingabe der Raumabmessungen, der Auswahl der Belegung der einzelnen Raumbegrenzungsflächen (bzw. eventueller Teilflächen) und der Streukörperdichte. Die Streukörperdichte wird zur Abschätzung des diffus gestreuten Schalleinteils bei der Berechnung der Schallausbreitungskurve nach VDI 3760 benötigt.

Dialog Raumdaten

- **Länge/Breite/Höhe**: Geben Sie hier die Abmessungen des Raums ein (in Metern). Die Raumhöhe ist die akustisch relevante Raumhöhe, die z.B. bei absorbierenden Decken bis zu deren Unterkante reicht. Der Luftabstand einer absorbierenden Decke wird bei der Berechnung des effektiven Raumvolumens im Zuge der Berechnung berücksichtigt.

- **Volumen V, Raumoberfläche S_tot**: Brutto-Raumvolumen (in m³) und gesamte Raumoberfläche (in m²) der Raumbegrenzungsflächen. Das Volumen von Hindernissen oder Abdeckung der Raumoberflächen durch Hindernisse wird dabei nicht berücksichtigt. Bei Eingabe von Hindernissen und bei Teilabtrennungen des Raumes (z.B. mit raumhohen Schirmen) stimmt dieses Volumen daher nicht mehr mit dem freien Raumvolumen überein.
In CadnaR können - einstweilen - nur rechtwinklige Raumgrundrisse eingegeben werden (orthogonale Grundrisse). Der Ursprung \((x,y)=(0,0)\) liegt in der linken unteren Ecke der Raumgrundfläche. Daher entsprechen:

- die Länge \(L\) dem Maximalwert in \(x\)-Richtung,
- die Breite \(B\) dem Maximalwert in \(y\)-Richtung und
- die Höhe \(H\) dem Maximalwert in \(z\)-Richtung.

Die Vorgabewerte betragen \(L/B/H = 30/30/6\) m.

Die Streukörperdichte \(q\) im Raum kann entweder eingegeben oder nach Klick auf das Rechnersymbol aus einer vorgegebenen Liste gewählt oder aus Geometriedaten berechnet werden.

Die Streukörperdichte ist nur für das Berechnungsverfahren „VDI 3760“ relevant.

Streukörperdichte

Die Streukörperdichte \(q\) entspricht der Definition nach *Kuttruff*. Die Streukörperdichte hat vorwiegend für große Abstände (\(> 20\) m) wesentlichen Einfluss. Die auf den mittleren Abstandsbereich bezogenen Kennwerte werden nur in geringem Maße von dieser Größe beeinflusst.

Die Streukörperdichte \(q\) kann näherungsweise aus der Maschinenbelegung berechnet werden. Diese Berechnung der Streukörperdichte gilt näherungsweise, wenn die Raumhöhe nicht mehr als das doppelte der mittleren Höhe aller Einbauten beträgt.
<table>
<thead>
<tr>
<th>Option</th>
<th>Anteil an der Raumgrundfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>dicht</td>
<td>mehr als 50 % belegt</td>
</tr>
<tr>
<td>gering</td>
<td>20 - 50 % belegt</td>
</tr>
<tr>
<td>sehr gering</td>
<td>weniger als 20 % belegt</td>
</tr>
<tr>
<td>Oberfläche bekannt</td>
<td>Wenn dieser Punkt ausgewählt wird, können für das Raumvolumen und die Streukörperoberfläche Werte eingegeben werden. Unabhängig von den eingegebenen Raumabmessungen (L/B/H) kann hier auch ein davon abweichendes Volumen für nicht rechtwinklige Raumformen eingegeben werden (z.B. bei Shed-Dächern oder Kuppeln). Die Streukörperoberfläche entspricht der Oberfläche aller im Raum befindlichen Objekte, wenn man sich diese durch Quader ersetzt denkt.</td>
</tr>
</tbody>
</table>
In dieser Tabelle werden die mittleren Absorptionsgrade der 6 Raumbegrenzungsflächen (ausgehend von den Absorptionsgraden aller jeweiligen Teilflächen), ggf. der Absorptionsgrad durch die im Raum befindlichen Streukörper (nur für das Berechnungsverfahren „VDI 3760“) und die mittleren Absorptionsgrade für den gesamten Raum angezeigt.

<table>
<thead>
<tr>
<th>Raumbegrenzungsfläche</th>
<th>mittlere Absorptionsgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wand 1</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>Wand 2</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>Wand 3</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>Wand 4</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>Decke</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>Boden</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>Decke</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
<tr>
<td>ges. Raum</td>
<td>0.06 0.06 0.06 0.06 0.06 0.06</td>
</tr>
</tbody>
</table>

Nach Doppelklick in die Tabelle wird die Tabelle Teilflächenliste geöffnet. Nach Doppelklick in eine Zeile der Tabelle Teilflächenliste kann eine schallabsorbierende Konstruktion aus der Datenbank gewählt werden.

- Spalte "Effektiv": Auf Basis der Werte in der Zeile "gesamter Raum" kann beurteilt werden, ob der nach der "Technischen Regel zur Lärmand Vibrations-Arbeitsschutzverordnung - TRLV Lärm, Teil 3" geforderte Wert von 0,3 bereits erreicht ist. Steht ein Wert in der Spalte "effektiv" in Klammern, so zeigt dies an, dass nicht alle Werte in einem der Absorptionsspektren der Raumbegrenzungsfläche vorhanden sind.

Option "nur Oktaven"

Die mittleren Absorptionsgrade können in Oktavbandbreite (Option "nur Oktaven" aktiviert) oder in Terzbandbreite dargestellt werden (Option "nur Oktaven" deaktiviert). Liegt das Terzspektrum eines Produktes vor, so werden bei aktivierter Option das Oktavspektrum aus dem Terzspektrum berechnet.
Nach Doppelklick in die Tabelle im Dialog Raumdaten oder Klick auf die Schaltfläche „Teilflächen“ wird die Tabelle Teilflächenliste angezeigt.

Tabelle Teilflächenliste

Die Teilflächenliste enthält alle Raumbegrenzungsflächen mit allen zugehörigen Teilflächen. Es können Teilflächen editiert, eingefügt oder gelöscht werden.

- **Teilflächen editieren**: Ein Doppelklick auf eine Tabellenzeile öffnet den zugehörigen Dialog Teilfläche. Solange man über die Tabelle Teilflächen in den Dialog Teilfläche gelangt ist, kann durch Klick auf die Pfeiltasten zwischen den Teilflächen gewechselt werden.

- **Neue Teilfläche einer Raumbegrenzungsfläche zuordnen**: Über das Kontextmenü der Tabelle kann eine neue Teilfläche eingefügt werden. Doppelklicken Sie anschließend in diese neue Zeile und weisen sie diese einer Raumbegrenzungsfläche über das Listenfeld "Ort" zu.

Dialog Teilflächenliste

Dialog Teilflächenliste mit eingefügten Türen: Tür 1 in Wand 1, Tür 2 in Wand 2
- **Reihenfolge der Teilflächen:** Die Reihenfolge der Teilflächen in der Teilflächenliste für die einzelnen Raumbegrenzungsflächen ist zu beachten.

 - *Überlappung von Teilflächen:* Wenn sich - zum Beispiel - die drei Teilflächen auf der Raumbegrenzungsfläche "Wand 1" aufgrund der eingegebenen Koordinaten überlappen, so gilt:
 - Die an der ersten Stelle der stehende Teilfläche ("Teilfläche 1") ist die unterste, rückseitige Schicht. Diese befindet sich auf der Rückwand/-decke.
 - Die an der zweiten Stelle stehende Teilfläche ("Teilfläche 2" unterhalb der "Teilfläche 1" in der Tabelle) ist die mittlere Schicht.
 - Die an der dritten Stelle stehende Teilfläche ("Teilfläche 3" unterhalb der "Teilfläche 2" in der Tabelle) ist die raumseitige, oberste Schicht.
 - Ist die oberste Teilfläche 3 als geschlossen angegeben, so gilt deren Absorptionsgrad für den Überlappungsbereich. Ist die oberste Teilfläche 3 als offen angegeben, so erhöht sie den Absorptionsgrad der bereits vorhandenen Absorption entsprechend dem Schalldurchgang durch diese Schicht.

 - *verbleibende Restfläche:* Wenn die Summe aller einer Raumbegrenzungsfläche zugeordneten Teilflächen kleiner ist als die Raumbegrenzungsfläche selbst, so wird der verbleibenden Restfläche automatisch das für schallharte Raumbegrenzungsflächen vorgegebene Absorptionsgradspektrum zugewiesen.

 - *Ansicht Teilflächen:* Der "Auskleidungszustand" einer Raumbegrenzungsfläche kann in der Ansicht **Teilflächen** (Schaltfläche "Ansicht" im Dialog **Raumdaten**) überprüft werden.
Der Dialog **Teilfläche** gestattet die Eingabe der geometrischen und akustischen Daten für jede Raumbegrenzungsfläche. Zudem erfolgt hier die Auswahl von Konstruktionen aus der Datenbank schallabsorbierender Konstruktionen.

Dialog Teilfläche

Die farbige Fläche im Raumsymbol zeigt an, welche Raumbegrenzungsfläche ausgewählt ist (gilt auch für Streukörperabsorption).

- **Bezeichnung**: Beschreibung dieser Teilfläche (z.B. Ortslage mit Planbezug)
- **Absorptionsspektrum**: Absorptionsgrade für die aktuell gewählte Teilfläche können über Tastatur eingegeben oder aus der Absorptionsbibliothek ausgewählt werden (über das Dateiauswahlsymbol am unteren Ende des Dialogs). Auch aus der Bibliothek übernommene Werte können editiert werden. Manuell eingegebene Werte werden mit den Projektdaten in der Projektdatei gespeichert, nicht jedoch in der Absorptionsbibliothek. Anderenfalls muss der Datensatz in die Absorptionsbibliothek eingefügt werden.

Ist diese aktiviert, werden die mittleren Absorptionsgrade in Oktavbandbreite dargestellt, ansonsten - falls diese vorliegen - in Terzbandbreite.

- Ist ein Terzspektrum vorhanden, so werden bei aktivierter Option "nur Oktaven" die Oktavwerte aus den Terzwerten durch "reziproke Addition" berechnet. Beim nochmaligem Umschalten sind die ursprünglichen Terzwerte nicht mehr vorhanden und es wird allen drei Terzen einer Oktave die Werte des Oktavbands zugewiesen.
• **Totalbelegung**: Ist eine Raumbegrenzungsfläche total belegt, so wird das entsprechende Absorptionsspektrum der gesamten, aus den Raumabmessungen resultierenden Fläche zugewiesen. Werden weitere Teilflächen mit der entsprechenden Fläche (in m²) oder durch Angabe der Lagekoordinaten eingegeben, so gilt das mit Totalbelegung gekennzeichnete Absorptionsspektrum nur noch für die verbleibende Restfläche. Eine mit Totalbelegung gekennzeichnete Teilfläche, die als geschlossen markiert ist, führt zur Unwirksamkeit aller dahinter liegenden und in der Tabelle unterhalb stehenden Teilflächen, die sich auf dieselbe Raumbegrenzungsfläche beziehen. Diese werden von der geschlossenen Konstruktion abgedeckt.

• **Fläche in m²**: Hier können m² Angaben für die Teilflächen eingegeben werden (s.a. Totalbelegung). Auch bei flächenbildenden offenen Systemen - z.B. Kulissenkonstruktionen - ist dies stets die Projektion der Anordnung auf die betreffende Raumbegrenzungsfläche.

• **Koordinaten**: Nach Anklicken dieses Schalters können die xy-Koordinaten für die Teilflächen eingegeben werden. Diese beziehen sich auf die Ansicht der Teilfläche aus dem Innenraum. Für die Decke ist die x-Koordinate die gemeinsame Kante mit Wand 3 und die y-Koordinate die gemeinsame Kante mit Wand 4.

• **geschlossen/offen**: Bei Auswahl eines Produktes aus der Absorptionsbibliothek wird angezeigt, ob es sich um ein geschlossenes (z.B. Deckenplatten) oder offenes System (z.B. Kulissensystem) handelt.

• **Luftabstand (mm)**: Handelt es sich um ein offenes System, welches sich vor einer weiteren Absorptionsfläche befindet, so wird bei Berechnung der Absorptionsgrad der Gesamtstruktur korrekt berechnet. Bei einem offenen System kann im Dialog Teilfläche ein Luftabstand (in mm) eingegeben werden. Dieser Luftabstand wird über das Volumen bei der Berechnung der Nachhallzeit berücksichtigt.

• **Elemente/m²**: Diese Angabe kann zur Definition der Anordnungsichte von Einzelelementen angegeben werden (z.B. bei Kulissendecken oder bei einzelnen Schallschuckkörpern).

• **Produkt auswählen**: Nach Auswahl eines Produktes aus der Absorptionsbibliothek über das Dateiauswahlsymbol wird der Herstellername und die Produktbezeichnung hier eingetragen.
Nach Klick auf diese Schaltfläche wird die gewählte Teilfläche (z.B. Wand 1) in der Vorderansicht angezeigt.

Die dargestellte Ansicht bezieht sich bei Wänden auf die Vorderansicht bei Blick aus dem Rauminneren auf die jeweilige Wandfläche. Die Nummerierung erfolgt entgegen dem Uhrzeigersinn ausgehend von Wand 1 um unteren Rand.

Die Orientierung von Decke und Boden bezieht sich auf die Ansicht, die sich ergibt, wenn der Beobachter, mit dem Rücken zur Wand 1 gerichtet, aus dem Rauminneren auf die Decke- oder Bodenfläche blickt. Der Nullpunkt liegt dann immer in der linken unteren Ecke der sich so ergebenden Vorderansicht der Teilfläche.

<table>
<thead>
<tr>
<th>Absorption</th>
<th>Farbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>tieffrequent</td>
<td>rot</td>
</tr>
<tr>
<td>mittelfrequent</td>
<td>grün</td>
</tr>
<tr>
<td>hochfrequent</td>
<td>blau</td>
</tr>
<tr>
<td>breitbandig ($\alpha = 1$ überall)</td>
<td>schwarz</td>
</tr>
<tr>
<td>ohne Absorption (schallharte Fläche)</td>
<td>weiß</td>
</tr>
</tbody>
</table>

Die gewählte Farbskala stellt sicher, dass bei Farb- und bei Schwarz-Weiß-Darstellung die Fläche mit wachsendem Absorptionsgrad dunkler wird. Ist eine Teilfläche nur mit ihrem Flächeninhalt in m², nicht jedoch durch Angabe der Lagekoordinaten eingegeben worden - dies ist für die Berechnung der Nachhallzeit und der Schallausbreitung nach VDI 3760 ausreichend - so wird die entsprechende äquivalente Absorptionsfläche auf die gesamte Raumbegrenzungsfläche umgerechnet und deren Absorptionsgrad für die Ansichtsdarstellung entsprechend erhöht.

Bei sich ganz oder teilweise überdeckenden Teilflächen hängt die Darstellung des Überdeckungsbereichs davon ab, ob die raumseitige Teilfläche eine offene oder geschlossene Konstruktion ist.

Das Spektrum im Diagramm zeigt den mittleren frequenzabhängigen Absorptionsgrad der aktiven Raumbegrenzungsfläche. Es wird, abhängig vom Datensatz, entweder das Oktav- oder Terzspektrum angezeigt.

Absorptions-Diagramm, Oktav-/Terzdarstellung
9.1.4.3 Diagramme (SAK/T)

Dieser Befehl im Menü Eigenschaften steht nur zur Verfügung, wenn in der Berechnungskonfiguration (siehe Kapitel 9.1.3) die Methoden „VDI 3760“ oder „statistisch“ ausgewählt sind. Abhängig vom gewählten Untervorhangbefehl werden die Schallausbreitungskurve (SAK) nach VDI 3760 und das Nachhallzeit-Diagramm T (nach Sabine oder Eyring) angezeigt.

Wird die Berechnung der Schallausbreitungskurve oder der Nachhallzeit gestartet, so werden immer beide berechnet, unabhängig davon, was aktuell angezeigt wird. Damit ist gewährleistet, dass sowohl die Nachhallzeit, als auch die Schallausbreitungskurve immer dem aktuellen Stand der Raumdaten (siehe Kapitel 9.1.4.2) entsprechen. Die Befehle im Menü Eigenschaften|Diagramme (SAK/T) bzw. die Symbole auf der Symbolleiste beziehen sich daher nur auf die Darstellung.

Im Dialog zur Darstellung der Schallausbreitungskurve oder der Nachhallzeit steht eine eigenständige Symbolleiste zur Verfügung.

Listenfeld:

aktuelles Diagramm in Zwischenlage kopieren: Bei Klick auf dieses Symbol wird das Diagramm der Schallausbreitungskurve oder der Nachhallzeit (abhängig davon, was gewählt ist) in die Zwischenablage kopiert. Danach kann der Inhalt der Zwischenablage in eine andere Anwendung eingefügt werden.

Berechnung der Schallausbreitungskurve bzw. der Nachhallzeit starten (alternativ über den Befehl SAK/T berechnen im Menü Berechnung)

Dialog Raumdaten öffnen (siehe Kapitel 9.1.4.2)

Dialog Pfade + Nachhallzeiten öffnen (siehe unten)

Dialog SAK-Diagramm oder Nachhallzeit-Diagramm zur Einstellung der Diagramm-Optionen öffnen (siehe unten)

Schallausbreitungskurve anzeigen

Nachhallzeit-Diagramm anzeigen
Bei Auswahl dieses Unterbefehls wird das SAK-Diagramm angezeigt.

![Diagramm](image)

Dialog **SAK-Diagramm** (Menü **Eigenschaften**|**Diagramme**)

Das SAK-Diagramm zeigt die Ausbreitungsdämpfung in dB (als Differenz zwischen dem Schalldruckpegel L_p und dem Schallleistungspegel L_w) über dem logarithmierten Abstand (in m) zwischen einer Punktquelle und dem Empfangsort an. Es können bis zu fünf Kurven gleichzeitig dargestellt werden.

- **Kurve der Freifeldausbreitung**: Die standardmäßig eingetragene gestrichelte Kurve entspricht der Freifeldausbreitung (mit $\Delta L = 1/(4\pi r^2)$, somit z.B. $\Delta L = -24,9$ dB bei 5 m Abstand).

- **Aktuelle Kurve**: Wenn mehrere Kurven im SAK-Diagramm dargestellt werden, ist eine Kurve die aktuelle Kurve, auf die sich alle weiter ausgeführten Operationen beziehen (z.B. Änderung der Absorptionsflächen). Die anschließende Neuberechnung ändert die aktuelle Kurve. Beim Berechnungsverfahren "VDI 3760" wird die aktuell gewählte Schallausbreitungskurve für die Berechnung der Pegelverteilung im Raum verwendet.
• **Aktuelle Kurve wählen**: Um eine Kurve als aktuelle Kurve zu bestimmen, wählen Sie diese aus dem Feld auf dem Dialog SAK-Diagramm aus. Auf diese Kurve beziehen sich dann alle weiteren Operationen.

Import Pfad

- **Meßgerät**: Wählen Sie dem Listenfeld ein Meßgerät aus, deren Export-Datei von *CadnaR* importiert werden kann. Falls Ihr Meßgerät nicht in der Liste vorhanden ist, exportieren Sie die Daten in eine Textdatei und importieren Sie diese Daten über die Option "ASCII-Datei".

 - Beispiele für ASCII-Importdateien (*SAK_SDC_125_4000.txt* und *SAK_SDC_31.5_8000.txt*): Die spektrale Zuordnung erfolgt auf Basis der in der Frequenzen in der ersten Datenzeile. In *CadnaR* nicht vorhandene Bänder werden ignoriert.

 - **Spektrum**: Die Nummer des ersten und letzten Spektrums bzw. alternativ die Nummer des ersten Spektrums und die Anzahl der Spektren der gemessenen Schallausbreitungskurve ist anzugeben.
• **Feld "Schallquelle"**: Für die Schallquelle, die zum Messen der Schallausbreitungskurve benutzt wurde, kann das Oktavspektrum der Schallleistung eingegeben oder aus der Schallleistungsbibliothek durch Doppelklick übernommen werden. Bei Klick auf das Dateiauswahlsymbol öffnet sich die Tabelle **Schallleistung**.

• **Abstandsreihe**: Jedes Spektrum wurde bei einem bestimmten Abstand Quelle-Messsorte ermittelt. Es können folgende Definitionen von Abstandsreihen gewählt werden:

 - *Standard incl. BIA-Abstände*: Hier sind auch die Entfernungen 0.75 m und 1.5 m einbezogen, wie es im entsprechenden berufsgenossenschaftlichen Arbeitsblatt empfohlen ist.

 - *Standard*: Dies ist die im Forschungsbericht BAU Fb 621 "Schallausbreitung in Arbeitsräumen" zugrundegelegte und auch in VDI 3760 empfohlene Abstandsreihe.

 - *logarithmisch*: Die Staffelung der Abstände erfolgt logarithmisch mit dem Faktor 2 von einer zur nächsten Abstandposition.

• **Abstände (m)**: In diesem Fenster werden die einzelnen Abstände in (m) angezeigt, die zu der gewählten Abstandsreihe gehören. Wenn einzelne Werte dieser Abstandsreihe entfallen - z.B. wegen Pfeilern, Maschinen oder sonstigen Einbauten eine Messung - so können diese Abstände durch einfaches Anklicken mit dem Mauszeiger deaktiviert werden. Diese Werte erscheinen dann hinterlegt.

• **Schaltfläche OK**: Nachdem alle Einstellungen vorgenommen wurden, wird der Importvorgang durch Klick auf OK gestartet.
Wird die Schallausbreitungskurve angezeigt, so können über dieses Symbol auf der Symbolleiste die Optionen zur Darstellung und Analyse des SAK-Diagramms eingestellt werden.

SAK-Diagrammdarstellung editieren

Die standardmäßig ausgewählten Optionen entsprechen den Vorgaben nach VDI 3760.

- **Abmessungen:**
 - Abmessungen der Lp-Lw Achse pro 10 dB in cm
 - Abstandsachse pro Dekade in cm

- **Darstellung:** Frequenzbereichsdarstellung entweder gesamter Frequenzbereich (in Oktaven) oder nur für eine Oktave

- **Kurvenanalyse:** Die für die Kurvenanalyse darzustellenden Parameter und Abstandsbereiche. Parameter:
 - DLf Pegelniveau durch Pegelüberhöhung in dB (siehe VDI 3760)
 - DL2 Pegelabnahme pro Abstandsverdopplung in dB
 - Abstandsbereiche:
 - Nahbereich: 1 m <= r <= 5 m
 - Mittelbereich: 5 m < r <= 16 m
 - Fernbereich: 16 m < r <= 64 m
• DL2 (BIA) Pegelabnahme nach Lärmschutzarbeitsblatt 03-234 (ZH1/564.16)

• **Option „Kurvenanalyse“**: Ist diese Option aktiviert, so werden die nach VDI 3760 und "Technischen Regel zur Lärm- und Vibrations-Arbeitsschutzverordnung - TRLV Lärm, Teil 3" zur Raumbeurteilung erforderlichen Kennwerte aus der Schallausbreitungskurve berechnet und unter dem SAK-Diagramm dargestellt.

 Schaltfläche "Schriftart": Die Schriftart und die Schriftgröße für die Darstellung der Tabelle der SAK-Kurvenanalyse kann gewählt werden.

• **Option „Regressionsgeraden“**: Ist diese Option aktiviert, so werden drei Regressionsgeraden als Annäherung der Schallausbreitungskurve für 3 Abstandsbereiche berechnet und eingezeichnet.
Nachhallzeit-Diagramm

Bei Auswahl dieses Unterbefehls wird das Nachhallzeit-Diagramm angezeigt. Dieses zeigt die auf Basis der statistischen Nachhall-Theorie berechnete Nachhallzeit (in s) über der Frequenz (in Hz) an.

Dialog **Nachhallzeit-Diagramm** (Menü **Eigenschaften**|**Diagramme**)

- **Aktuelle Kurve**: Wenn mehrere Kurven im T-Diagramm dargestellt werden (bis zu fünf Kurven sind möglich), ist eine Kurve die aktuelle Kurve, auf die sich alle weiter ausgeführten Optionen beziehen (z.B. Änderung der Absorptionsflächen). Die anschließende Neuberechnung ändert die aktuell gewählte Nachhallzeit-Kurve.

- **Aktuelle Kurve wählen**: Um eine Kurve als aktuelle Kurve zu bestimmen, wählen Sie diese aus dem Feld aus. Auf diese Kurve beziehen sich dann alle weiteren Operationen.
In diesem Dialog werden die Optionen zum Import von Nachhallzeit-Verläufe festgelegt. Bei aufeinanderfolgenden Importvorgängen für getrennte Kurven werden diese gleichzeitig dargestellt.

- **Meßgerät**: Standardmäßig ist die Option "ASCII-Datei" gewählt. Exportieren Sie die Daten in eine Textdatei und importieren Sie diese Daten über die Option "ASCII-Datei".

 - Beispiele für Importdateien (T_100_8000.txt und T_125_8000.txt): Die spektrale Zuordnung erfolgt auf Basis der in der Frequenzen in der ersten Datenzeile. In CadnaR nicht vorhandene Bänder werden ignoriert.

- **Nachhallzeiten T15/T20 oder T30** (nicht für Option "ASCII-Datei"): Definitionsgemäß entspricht die Nachhallzeit T dem Zeitraum, in dem der Pegel nach Abschalten der Schallquelle um 60 dB abgefallen ist. Messtechnik wird hingegen entweder T15/T20 oder T30 ermittelt. Je nachdem, ob diese bei der Messung der Abklingkurve aus den ersten um 20 dB oder um 30 dB des abklingenden Pegelverlaufs hochgerechnet wurde, werden die Meßdaten als T20 oder T30 bezeichnet.

- **Schaltfläche OK**: Nach Klick auf OK wird ein Dateiauswahlfenster geöffnet, in dem die gewünschte ASCII-Datei ausgewählt wird.
Wird die Nachhallzeitkurve angezeigt, so können über dieses Symbol auf der Symbolleiste die Optionen zur Darstellung und Analyse des Nachhallzeit-Diagramms eingestellt werden.

Nachhallzeit-Diagramm editieren

- **Abmessungen**: vertikal/horizontal in cm
- **Frequenzbereich**: Darstellung: von min. 100 Hz bis max. 6300 Hz (oder nur für eine Oktave)
- **Option "Mittelbereich = Darstellungsbereich"**:
 - *aktiviert*: Die Angabe der mittleren Nachhallzeit (in s) in der rechten oberen Ecke des Nachhallzeit-Diagramms bezieht sich auf den gleichen Frequenzbereich wie die Darstellung der Kurve im Diagramm. Die Bereichseingabe für die Mittelwertberechnung ist in diesem Fall deaktiviert.
 - *deaktiviert*: In diesem Fall kann der Bereich für die Mittelwertberechung gewählt werden. Die mittlere Nachhallzeitberechnung bezieht sich dann auf den eingestellten Frequenzbereich, der nicht mit dem dargestellten Frequenzbereich der Kurve übereinstimmen muss.
Der Dialog **Schallausbreitungspfade|Nachhallzeiten** ist über das Menü **Eigenschaften|Diagramme** oder, bei geöffnetem SAK- oder T-Diagramm, über das Symbol auf der Symbolleiste auswählbar.

Option "aktuell": kennzeichnet die aktuell ausgewählte Kurve

Bezeichnung: Es kann ein Name für bis zu fünf Kurven eingegeben werden. Standardmäßig sind die Bezeichnungen "(ohne Namen) 1..4" vorgegeben. Der Name kann maximal bis zu 30 Zeichen umfassen.

Option "darstellen": Liegt eine berechnete Kurve vor, so kann über diesen Schalter gewählt werden, ob diese im SAK- oder Nachhallzeit-Diagramm dargestellt werden soll. Es können bis zu fünf berechnete SAK/T-Kurven gleichzeitig im Diagramm dargestellt werden. Nicht berechnete Kurven werden auch nicht dargestellt.

Linienstil und Markierung definieren: Für jede Pegelklasse kann die Farbe, die Linienstärke in (mm/10), die Linienart und eine Markierung definiert werden. Klicken Sie dazu auf eines der Liniensymbole (z.B.).

Kommentar: Es kann für jede Kurve 0..4 ein individueller Kommentar eingefügt werden.
9.1.4.3 Diagramme (SAK/T)

- **Schaltfläche "Geometrie":**

 - *Option "Standardpfad (diagonal)" aktiviert*

 In diesem Fall erstreckt sich der Pfad für die Berechnung der Schallausbreitungskurve diagonal durch den Raum in einer Höhe von 1,5 m über der Raumgrundfläche, beginnend in der unteren linken Ecke mit einem Abstand von 1,5 m von den Seitenflächen. Dies entspricht somit dem nach VDI 3760 anzuwendenden Standard-Messpfad für diese Raumgeometrie. Die Berechnung der Schallausbreitungskurve erfolgt im Abstandsraster nach VDI 3760. Dabei werden an jedem Aufpunkt für jedes Frequenzband alle Reflexionen aufsummiert, bis eine Abbruchgenauigkeit von 0,5 dB erreicht ist.

 ![Pfadgeometrie](image)

 - *Option "Standardpfad (diagonal)" deaktiviert*

 Bei deaktivierter Option kann eine beliebige Lage des Pfades durch die Koordinaten des des Anfangs- und des Endpunkts angegeben werden (Anfangspunkt entspricht dem Quellpunkt). Das Pfadende kennzeichnet lediglich die Richtung des Pfads. Die Abstände sind Entfernungen zwischen Quellpunkt und Pfadpunkten.

 Die Lage der Quelle hat einen gewissen Einfluss auf die Pegelüberhöhung.
• **Schaltfläche "Punkteliste"**: Die Tabelle **Pfad: Einzelpunkte** enthält die Pegelverläufe für jede Oktave und für den Gesamtpegel an den Einzelpunkten entlang des Ausbreitungspfades der aktuellen Schallausbreitungskurve (SAK).

![Pfad: Einzelpunkte Table](image)

• **Schaltfläche "Nachhallzeit"**: Im Dialog **Nachhallzeit** werden die berechneten Nachhallzeiten (in s) als Zahlenwerte angezeigt.

![Nachhallzeit Dialog](image)

- **Schaltfläche "Import"**: Über diese Schaltfläche können Nachhallzeit-Verläufe importiert werden (siehe Abschnitt "Import Nachhallzeit" in diesem Kapitel).
- **Schaltfläche "Infos einfügen"**: Nach Klick auf diese Schaltfläche werden folgende Konfigurationseinstellungen in das Feld "Kommentar" für die aktuell gewählte Linie eingefügt:

 - Berechnungsverfahren
 - Berechnung der äquiv. Absorptionsfläche A
 - Streukörperabsorption einbeziehen J/N
 - Luftabsorption einbeziehen J/N
 - Abbruchkriterium
 - Luftabsorption (Temp./r.F.\%)n
 - Raumabmessungen (m)
 - Streukörperdichte q (1/m)

Bitte beachten Sie, dass bei Klick auf die Schaltfläche "Infos einfügen" der vorhandene Kommentar ohne Rückfrage überschrieben wird.

Konfigurations-Einstellungen für Linie "(ohne Namen) 0" eingefügt
9.1.4.4 Räumlich gemittelte Nachhallzeit (IPs)

In diesem Diagramm werden die räumlich, über alle vorhandenen Immisionspunkte (siehe Kapitel 5.9) gemittelten Nachhallzeiten T30, T20, T10 oder EDT über der Frequenz angezeigt.

Diese Nachhallzeiten werden aus den Echogrammen aller Immissionspunkte ermittelt. Daher ist zur Berechnung das Teilchenmodell erforderlich (Berechnungsverfahren „Spiegelquellen --> Teilchen“ oder „Teilchen“, siehe Kapitel 9.1.3.1). Zudem muss die Option „Echogramme und Abklingkurven berechnen ... für Immissionspunkte“ auf der Registerkarte „RIA-Auswertung“ (siehe Kapitel 9.1.3.1, Abschnitt ”Registerkarte „RIA-Auswertung““) aktiviert sein.

über das Menü Darstellung kann die Anzeige der o.g. Nachhallzeit-Verläufe ein- und ausgeschaltet werden. Zusätzlich können angezeigt werden:

• die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 125 bis 4000 Hz) für die Raumakustik-Klassen A, B und C von Einzelbüros oder von Mehrpersonenbüros nach VDI-Richtlinie 2569:2016-02 oder
Kapitel 9 - Referenz
9.1.4.4 Räumlich gemittelte Nachhallzeit (IPs)

- die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 63 bis 8000 Hz) für die fünf Nutzungsarten RG A1 bis RG A5 der Raumgruppe A nach DIN 18041:2015-02:
 - RG A1 Musik
 - RG A2 Sprache / Vortrag
 - RG A3 Unterricht / Kommunikation sowie Sprache/Vortrag inklusiv
 - RG A4 Unterricht / Kommunikation inklusiv
 - RG A5 Sport

Diagramm-Legende siehe Kapitel 5.11, Abschnitt "Schaltflächen"

Die Anforderungen an die Nachhallzeit für die fünf Nutzungsarten RG A1 bis RG A5 nach DIN 18041:2015-02 hängen vom Raumvolumen ab. Standardmäßig wird das sich aus den Raumabmessungen im Dialog Raum/Raumdaten (siehe Kapitel 9.1.4.2) berechnete Raumvolumen verwendet.

Falls das effektive Raumvolumen von dem oben genannten abweicht (z.B. nach Eingabe von Hindernisquadern, um andere - nicht rechteckige - Raumgeometrien zu modellieren), kann nach Aktivierung dieser Option das zur Berechnung der Anforderungen nach DIN 18041 anzusetzende Raumvolumen (in m³) eingegeben werden.
Die Auswertung der räumlich gemittelten Nachhallzeit erfolgt nur für die aktuelle Variante (siehe Kapitel 8.2).
Kapitel 9 - Referenz

9.1.4.4 Räumlich gemittelte Nachhallzeit (IPs)
9.1.4.5 Auswertung Immissionspunkketten

In diesem Fenster werden die Details der Überprüfung der Anforderungen an die raumakustischen Kenngrößen („Stufe der Schallausbreitung“ und „Raumakustikklasse“) für Mehrpersonenbüros gemäß VDI 2569:2016-02, ohne Berücksichtigung von der Anforderung an $L_{NA,Bau}$) angezeigt.

Die Anforderungen an die Nachhallzeit werden bezogen auf Teilpfade in den jeweiligen Stufen geprüft (siehe Tabelle 10, Spalte 2, VDI 2569:2016-02).
Kapitel 9 - Referenz

9.1.4.5 Auswertung Immissionspunktketten
9.1.4.6 Darstellung

Dialog Darstellung

Diese Option gestattet es, die Anzeige aller Objekte eines Objekttyps global zu unterdrücken. In der Grafik unsichtbare Objekte können nicht ausgewählt und nicht bearbeitet werden. Diese Einstellung wird beim Beenden gespeichert, so dass nach einem Neustart ggf. nicht alle Objekte angezeigt werden.

![Dialog Darstellung](image)

Dialogoptionen

- **Objektart darstellen**
- **Schaltfläche „Anwenden“**
- **Schaltfläche „Standard“**
Abhängig vom Objekttyp steht nur der Bereich "Linie" (z.B. bei Punkt- und Linienobjekten) oder stehen beide Bereiche zur Verfügung (z.B. bei Flächenobjekten).

Über den Schalter „Farbe“ kann eine Farbe direkt ausgewählt werden (Option „Farbe direkt eingeben“). Alternativ kann die Farbe über einen Formelausdruck festgelegt werden (Option „Farbe per Formel bestimmen“).

Nach Anklicken des farbigen Schalters kann die gewünschte Farbe aus der WINDOWS-Farbpalette ausgewählt werden. In diesem Falle hängt die Farbgebung des Objektes nicht von einer Bedingung ab.

Über die Schaltfläche „Farben definieren“ im Dialog Farbe können nutzerdefinierte Farben erzeugt und der Farbpalette hinzugefügt werden.

Ist die Option „Farbe per Formel bestimmen“ aktiviert, ist die Farbe dieser Objektart abhängig vom (numerischen) Attributwert (oder auch einer Kombination von Attributwerten). Dabei können die verwendbaren Attribute (siehe Kapitel 9.3) entweder direkt eingegeben oder aus der Popup-Menü nach Anklicken des Pfeilschalters (>) durch Anklicken ausgewählt werden.

Beispiele für Formeln:

<table>
<thead>
<tr>
<th>Formelausdruck</th>
<th>Auswirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWA</td>
<td>färbt Quellen in abhängig ihres A-bew. Schallleistungspegel ein (mit Option „aktuelles Raster“)</td>
</tr>
<tr>
<td>iif(LPA>0, rgb(255,0,0), rgb(0,0,0))</td>
<td>färbt Quellen mit einem LpA größer Null rot ein, die anderen schwarz (mit Option „direkt, ohne Palette“)</td>
</tr>
</tbody>
</table>
Die Option "Transparent" gibt global an, ob der Objekttyp durchscheinend (Option aktiviert) oder abdeckend (Option deaktiviert) zum Hintergrund sein soll. Dies ist von Interesse, wenn z.B. ein Projekt mit einer Bitmap hinterlegt ist. Bei Einstellung "transparent" ist in diesem Fall die Bitmap trotz der darüber platzierten CadnaR-Objekte sichtbar.

Dieser Wert wird für die Größendarstellung eines Objektsymbols verwendet und steht nur für Punktobjekte zur Verfügung. Die Angabe der Einheit gestattet die Einstellung von absoluten und relativen Größen:

- Auswahl Meter (m): Ist diese Einstellung gewählt, wird die Symbolgröße bei Maßstabsänderungen angepasst.
- Auswahl Millimeter (mm): Bei dieser Einstellung ist die Symbolgröße unabhängig vom Maßstab.

Im Dialog Darstellung werden auch die Darstellungsoptionen für deaktivierte Objekte eingestellt (Objektart "(deaktiviert)" am Ende der Objektliste). Deaktivierte Objekte, die in der Grafik unsichtbar dargestellt sind, können nicht ausgewählt und somit nicht bearbeitet werden. Sind hingegen deaktivierte Objekte sichtbar (z.B. mit gestrichelten Linien) können diese weiterhin ausgewählt und bearbeitet werden.
9.1.4.7 Bitmaps darstellen

Mit diesem Befehl aus dem Menü Eigenschaften oder durch Klicken des Bitmap-Symbols auf der Symbolleiste wird ein Dialog geöffnet, in dem die Darstellungssart schwarz-weißer Bitmaps am Bildschirm festgelegt werden kann.

![Bitmap dialog](image)

Mit dieser Option kann die Anzeige der Bitmaps global ein- und ausgeschaltet werden.

Es kann gewählt werden, welcher Darstellungsmodus in der Bildschirmanzeige bei Schwarz-Weiß-Bitmaps (mit 1-Bit Farbtiefe) verwendet werden soll:

- **Normal**: Es wird der Schwarzwert des ersten gefundenen Pixels verwendet.
- **Favorisiere Schwarz**: Wird bei Zoomen ein schwarzes Pixel gefunden, wird Schwarz verwendet.
- **Graustufen**: Es wird eine gemittelte Graustufe auf Basis aller Graanteile verwendet.

Die gewählte Einstellung beeinflusst die Qualität der Bildschirmwiedergabe von Bitmaps bei Zoom-Vorgängen (Zoom +, Zoom -), wobei die Option "Graustufen" die meiste Rechenzeit benötigt.

Die Option "Darstellungsart" hat auf farbige Bitmaps keine Auswirkungen.
Kapitel 9 - Referenz
9.1.4.7 Bitmaps darstellen
9.1.4.8 Koordinatengitter

Ein Koordinatengitter dient als Eingabehilfe bei der Objekteingabe. Das am Bildschirm angezeigte Koordinatengitter wird auch beim Kopieren oder Drucken ausgegeben.

![Dialog Koordinatengitter](image)

Dialog Koordinatengitter

<table>
<thead>
<tr>
<th>Option</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koordinatengitter</td>
<td>Schaltet die Darstellung des Koordinatengitters Ein/Aus.</td>
</tr>
<tr>
<td>darstellen</td>
<td></td>
</tr>
<tr>
<td>Voxelgitter</td>
<td>Wird diese Option aktiviert, so kann der Gitterabstand nicht mehr eingege-</td>
</tr>
<tr>
<td>darstellen</td>
<td>ben werden. Stattdessen wird der (xyz-äquidistante) Voxelabstand verwendet</td>
</tr>
<tr>
<td>(m)</td>
<td>(siehe Kapitel 9.1.6). Beachten Sie, dass in diesem Fall die Voxelgrenzen</td>
</tr>
<tr>
<td>Gitterabstand (m)</td>
<td>und nicht die Voxel-Mittelpunkte dargestellt werden.</td>
</tr>
<tr>
<td>Gittergröße (%)</td>
<td>Der Gitterabstand gilt gleichzeitig für die x- und die y-Koordinate.</td>
</tr>
<tr>
<td>Linienart</td>
<td>Bei 100 % Gittergröße ist das Gitterraster durch Linien geschlossen.</td>
</tr>
<tr>
<td></td>
<td>Es kann die Farbe, die Linienstärke in (mm/10) und die Linienart definiert</td>
</tr>
<tr>
<td></td>
<td>werden.</td>
</tr>
</tbody>
</table>

Dialogoptionen

Koordinatengitter
darstellen

Voxelgitter darstellen

Gitterabstand (m)

Gittergröße (%)

Linienart

Kapitel 9 - Referenz

9.1.4.8 Koordinatengitter
9.1.4.9 Layer

Mit Hilfe dieses Dialogs wird die Zeichenreihenfolge von Objekten auf dem Bildschirm festgelegt. Dadurch ist beeinflussbar, welche Objektart von einer anderen ggf. abdeckt wird (abhängig auch von der gewählten Objektdarstellung, siehe Kapitel 9.1.4.6).

![Dialog Layer](image)

Die Reihenfolge der Objekte in dieser Liste bestimmt die Zeichenreihenfolge auf dem Bildschirm. Das Objekt am oberen Ende der Liste ("Raster" in der Standardeinstellung) wird zuerst, das unterste zuletzt gezeichnet.

Markieren Sie das zu verschiebende Objekt mit der Maus, ziehen Sie das Objekt bei gedrückter gehaltener Maustaste an die gewünschte Position in der Liste und lassen Sie die Maustaste los.

wendet die aktuelle Reihenfolge der Objekte an, ohne den Dialog zu schließen

stellen auf die programm-intern festgelegte Reihenfolge zurück
Kapitel 9 - Referenz
9.1.4.9 Layer
9.1.4.10 Objektfang

Mit Hilfe des Objektfangs können neu einzugebende abschirmende Objekte in einem definierten Abstand eines vorhandenen abschirmenden Objekts platziert werden. Diese Funktion ist anwendbar:

- auf Polygonobjekte (alle Quellen und Hindernisse, außer Punktquelle), um diese an die Raumbegrenzungsflächen, das Koordinatengitter oder auf andere Polygonobjekte zu fangen oder
- auf Punktobjekte (Immissionspunkt und Punktquelle), um diese am Koordinatengitter zu fangen.

kein Fang: Es erfolgt kein Objektfang.

Fangradius in m: Bei der Angabe des Objektfangs in Metern ist der Fangradius am Bildschirm abhängig von vom eingestellten Maßstab. In diesem Fall wird im Feld "Fangradius in Pixel" die dem aktuell gewählten Maßstab korrespondierende Anzahl Bildschirmpixel angezeigt.

Fangradius in Pixel: Durch die Angabe des Objektfangs in Pixel ist der Fangradius am Bildschirm unabhängig von dem gewählten Maßstab. In diesem Fall wird im Feld "Fangradius in m" der im aktuell gewählten Maßstab korrespondierende Abstand in Metern angezeigt.

Bei aktivierten Koordinatengitter werden Objektpunkte an Gitterpunkte gefangen, wenn diese innerhalb des Fangradius liegen.
Hier wird die Größe des wirksamen Objektfangkreises angezeigt.
9.1.4.11 Teilchen-Visualisierung

In diesem Dialog wird die maximale Teilchenzahl festgelegt, die zur 3D-Visualisierung der Ausbreitung beim Teilchenmodell verwendet wird (so- genanntes "Teilchen-Pingpong" im Dialog 3D-Ansicht, siehe Kapitel 9.1.4.1).

Ist die Teilchen-Visualisierung aktiviert, wird dies durch ein Häkchen vor dem Menüeintrag gekennzeichnet.

Diese Option ist standardmäßig aktiviert. Nach Deaktivieren dieser Option steht die Teilchen-Visualisierung im Dialog 3D-Ansicht nicht mehr zur Verfügung (Optionen "grau" im Menü Darstellung).

Geben Sie hier die im Dialog 3D-Ansicht maximal zu verwendende Teilchenzahl für die Teilchen-Visualisierung an. Standardwert: 10000.

Geben Sie hier den maximal zur Verfügung stehenden RAM-Speicher für die Teilchen-Visualisierung an. Standardwert: 100 MegaByte.
9.1.4.12 Symbolleiste/Statuszeile anzeigen

Symbole ermöglichen das direkte Aufrufen von Menübefehlen durch Anklicken des entsprechenden Symbols in der Symbolleiste (siehe Kapitel 3.2).

Über diesen Befehl im Menü Eigenschaften wird die Anzeige der Symbolleiste ein- oder ausgeschaltet. Wird der Mauszeiger über eines der Symbole positioniert, ohne die Maustaste zu drücken, so wird die entsprechende Funktion dieses Symbols in einem "Tooltip" angezeigt.

In der Statuszeile am unteren des CadnaR-Hauptfensters werden links Erklärungen zu Menübefehlen angezeigt, wenn der Befehl Statuszeile anzeigen im Menü Eigenschaften aktiviert wurde. Auf der rechten Seite der Statuszeile werden die Koordinaten der aktuellen Position des Mauszeigers und - nach einer Berechnung - zusätzlich der Pegelwert oder der Wert des gewählten raumakustischen Gütemaßes an dieser Position angezeigt (Anzeige mit zwei Nachkommastellen hinter "V.", für "Value").
Kapitel 9 - Referenz
9.1.4.12 Symbolleiste/Statuszeile anzeigen
9.1.4.13 Sprache

CadnaR kann in mehreren Sprachen betrieben werden (z.Zt. wahlweise in Deutsch, Englisch, Französisch, Spanisch, Polnisch oder Portugiesisch).

Ist der Eintrag "Default" gewählt, wird beim Start von CadnaR automatisch die Sprache gewählt, die der Ländereinstellung im WIINDOWS-System entspricht. Dies ist die Standard-Einstellung. Ist eine Sprache erforderlich, die CadnaR nicht zur Verfügung stellt, so wird die englische Programmoberfläche angezeigt.

Geänderte Spracheinstellungen sind nach einem Neustart von CadnaR wirksam.
9.1.4.14 Sonstiges

Here it is the point or the comma is set, which is used in edit fields or in table cells. Pay attention that in fields, which use formulas and operators, the point is used as the decimal separator.

- **Markierungsgröße**: This value determines the size of the marking points of an object.
- **Segmentlänge**: With entering line objects with the mouse, you can force the entry of predefined segments by pressing the STRG key. Enter a desired length (m). The default value is 10 m.
- **Update beim Verschieben**: Click on a white area in the main window of CadnaR and hold the left mouse button, a hand appears on the screen. In this mode, you can move the graphics anywhere within the set area. With the active option "Update when moving", the graphics is constantly updated during the move, otherwise only after releasing the mouse button.
• **Updaten bei Rasterberechnung**: Bei aktiver Option wird während der Rechnung das Farbraster für die bereits berechneten Flächen kontinuierlich angezeigt.

• **Hintergrund außerhalb Umgriff**: Für die Fläche, die nicht zum Umgriff (Raumgrundfläche) gehört, kann eine Farbe gewählt werden. Über den Farbschalter wird die gewünschte Farbe ausgewählt.

Strahlfarbe aus Pegel

Diese Option ist standardmäßig aktiviert. In diesem Fall ergibt sich die Farbe der Schallstrahlen in der Planansicht und in der 3D-Ansicht (siehe Kapitel 9.1.4.1) auf Basis des Teilpegels unter Verwendung der im Dialog **Raster|Darstellung** festgelegten Farbklassen (siehe Kapitel 9.1.5.2).

Ist diese Option deaktiviert, so bestimmt die Strahlordnung (und nicht der Teilpegel) die Farbe des jeweiligen Strahls. Die im Dialog **Raster|Darstellung** festgelegten Farbklassen werden den Reflexionsordnungen zugeordnet gemäß:

• 1. Farbkasse (oberste Klasse): Farbe für Direktstrahlen, und

Die Farbzuordnung beginnt für Strahlen oberhalb der 12. Ordnung wieder mit der obersten Farbkasse.

Raster und Voxelgitter

• **äquidistante Rasterpunkte** \((dx = dy)\), standardmäßig Ein: Standardmäßig sind die Abstände des Raster in x- und y-Richtung gleich. In diesem Fall kann im Dialog **Immissionspunktraster** (siehe Kapitel 9.1.5.1) nur der Abstand \(dx\) (m) eingegeben werden.

• **äquidistante Voxel** \((dx = dy = dz)\), standardmäßig Ein: Standardmäßig sind die Abstände des Voxelgitters sind in x-, y- und z-Richtung gleich. In diesem Fall kann im Dialog **Voxelgitter** (siehe Kapitel 9.1.6) nur der Abstand \(dx\) (m) eingegeben werden.

• **Änderungen synchronisieren** (standardmäßig Ein): Standardmäßig führt eine Änderung des Abstands \(dx\) (m) für Rasterpunkte zu einer synchronen Änderung für das Voxelgitter, und umgekehrt.
mit Programmfenster verschieben (standardmäßig Ein): In diesem Fall wird der Werkzeugkasten (Toolbox) gleichzeitig mit Programmfenster verschoben, ansonsten nicht.
9.1.5 Menü Raster

9.1.5.1 Spezifikation

Geben Sie den Abstand zwischen den Immissionspunkten in x-Richtung und die Immissionspunkthöhe über der Raumgrundfläche ein. Standardmäßig können nur äquidistante Raster bzw. Voxelgitter (siehe Kapitel 9.1.6) spezifiziert werden (Standard-Rasterweite 1*1 m, Höhe 1 m). Bei Änderungen wird nachgefragt, ob das jeweils andere Gitter auf die gleiche Schrittweite angepasst werden soll.

Um nicht-äquidistante Raster zu verwenden, siehe Kapitel 9.1.4.14 "Sonstiges".

Dialog Immissionspunktraster (mit Optionen)

- Option "Raumgrundfläche mit Raster belegen": Standardmäßig wird die Rasterberechnung für die gesamte Raumgrundfläche durchgeführt. Ist die Option "Raumgrundfläche mit Raster belegen" deaktiviert, können alternativ die Koordinaten der unteren linken und der oberen rechten Ecke der Rasterfläche innerhalb der Raumgrundfläche angegeben werden.
• **Option "Rasterpunkte in Objekten ausschließen"**
 - *aktiviert*: Standardmäßig werden Rasterpunkte, die sich innerhalb des Umfangs von Objekten befinden, aus der Rasterberechnung ausgeschlossen.
 - *deaktiviert*: In diesem Fall werden die Pegel an Rasterpunkte innerhalb des Umfangs von Objekten so berechnet, als sei die Abschirmung durch die Objekte nicht vorhanden.
9.1.5.2 Rasterdarstellung

Im Menü **Raster|Darstellung** wird das Aussehen des berechneten Rasters festgelegt. Flächen, in denen der berechnete Schallpegel oder der Wert des gewählten raumakustischen Gütemaßes innerhalb von vorgebbaren Intervallgrenzen liegt, werden mit derselben Farbe dargestellt.

![Dialog Rasterdarstellung](image)

Dialog Rasterdarstellung

- **Darstellung als ...**
 - **Linien gleichen Schallpegels**: Die Intervallbreite des Pegels wird unter "Klassenbreite" definiert.
 - **Flächen gleichen Schallpegels**: Die Flächengrenzen werden geometrisch interpoliert. Bei dieser Einstellungen können in der 2D-Darstellung um Hindernisse farblose Flächen auftreten, da sich die nächsten Rasterpunkte unter dem Hindernissen befinden.
 - **Flächenraster, Oversampling**: Bei Auswahl einer Oversampling-Rate von 1 erfolgt die flächenhafte Darstellung mit der Auflösung, die das gewählte Berechnungsraster vorgibt. Bei einem Wert >1 werden weitere Zwischenpunkte generiert, deren Rasterwert durch lineare Interpolation bestimmt wird. Die Option "Klassenbreite" hat keine Auswirkung für diese Darstellungsart.
- **keine Darstellung**: Es erfolgt keine Anzeige des Rasters auf dem Bildschirm.

Darstellungsbereich

- **Ober- und Untergrenze**: Der Darstellungsbereich der Linien oder Flächen gleichen Schallpegels beginnt an der Untergrenze und endet an der Obergrenze.

- **Klassenbreite**: Der Wert in diesem Feld wirkt sich nur dann aus, wenn entweder die Darstellungsoption "Linien gleichen Schallpegels" oder "Flächen gleichen Schallpegels" gewählt ist. Die Klassenbreite gibt an, in welcher Pegelstufen Linien zwischen der Unter- und der Obergrenze angezeigt werden.

- **Farbverlauf**: Bei aktivierter Option wird ein fließender Farbübergang von einer Farbe zur anderen erzeugt.

- **Legende**: Ist diese Option aktiviert, so wird eine Rasterlegende mit den Farb-Pegel-Zuordnung neben der Grafik angezeigt.

- **Rasterpunkte**: Die Rasterpunkte oder die Ganzzahlwerte des berechneten Pegels können angezeigt werden.

Nach Klick auf die Schaltfläche "Optionen" stehen zusätzlich folgende Einstellmöglichkeiten im Dialog **Rasterdarstellung** zur Verfügung:

- **Farben der Klassen**: Es können die Klassengrenzen (Klassenuntergrenze, nicht einschließend) und der Linienstil für 12 Klassen definiert werden. Für jede Pegelklasse kann die Farbe, die Linienstärke in (mm/10) und die Linienart definiert werden.

Der Bereich "Markierung" innerhalb des Dialogs **Linienstil** steht nur für Schallausbreitungskurven oder Nachhallzeit-Verläufe, nicht jedoch für Rasterlinien zur Verfügung.
• **Stärke aller ??0.0 Iso-dB-Linien**: Ist die Rasterdarstellung "Linien gleichen Schallpegels" aktiviert, können zwei Isolinien in periodischen Abständen durch abweichende Strichstärken hervorgehoben werden:

- Um z.B. alle Iso-dB-Linien in 10 dB-Intervallen dicker darzustellen, wird das erste Optionsfeld aktiviert und aus dessen ersten Listenfeld "??0.0" ausgewählt. Dabei fungieren die Fragezeichen als Platzhalter für beliebige Zahlen. Im nachfolgenden Eingabefeld wird die Linienstärke in mm/10 angegeben.

- Sollen zusätzlich z.B. alle in 5 dB-Intervallen dicker dargestellt werden, so wird das zweite Optionsfeld aktiviert und aus dessen ersten Listenfeld "??5.0" ausgewählt.

• **Schaltflächen "Farben laden" und "Farben speichern"**: Die Zuordnung Farbe-Pegelintervallgrenzen kann gespeichert und wieder geladen werden (Dateiendung *.PAL).

• **Option "Linienstärke am Bildschirm immer ein Pixel"**: Wenn die Linienstärke der Iso-dB-Linien größer 1 Pixel (Standardwert) gewählt wird, kann je nach Bildschirmtreiber der Aufbau der Grafik am Bildschirm eine gewisse Zeit in Anspruch nehmen. Um dies zu vermeiden, durch Anklicken dieser Option verhindert werden, dass die Linienstärke in ihrer definierten Breite angezeigt wird. Am Bildschirm ist dann keine Änderung der Linienstärke feststellbar. Die definierte Linienstärke kommt erst beim Ausdruck zum Tragen.

• **Klassenunterteilung anpassen**: Über die drei Schaltflächen kann eine automatische Anpassung der Klassenunterteilung vorgenommen werden.

 - *aktuelles Frequenzband*: Wählen Sie diese Option, um den aktuell gewählten Frequenzbereich des Rasters mit möglichst vielen Klassen darzustellen.

 - *gesamtes Spektrum*: Diese Option berücksichtigt alle Frequenzbereiche zu Erzeugung der Klasseneinteilung.

 - *individuell*: Über den Dialog **Klassenunterteilung** individuell kann eine eigene Klasseneinteilung für die Wert der Farbklassen definiert werden.
9.1.5.2 Rasterdarstellung

- **Standard**: Die Standard-Klasseneinteilung wird eingestellt (Klassen von 35 bis 85 dB(A) mit Klassenbreite 5 dB).

- **Option "Automatisch"**: Ist diese Option aktiviert, so wird der Raster-Darstellungsbereich und die Klassenbreite automatisch an die aktuell gewählte Zielgröße angepasst (Pegel oder raumakustischer Güteparameter).

Die Optionen gestatten die Festlegung einer eigenen Klasseneinteilung für die Wert der Farbklassen für die Rasterdarstellung.

- **Methode**

 - **Untergrenze und Klassenbreite**: ermöglicht die Eingabe von Untergrenze und Klassenbreite

 - **Obergrenze und Klassenbreite**: ermöglicht die Eingabe von Obergrenze und Klassenbreite

 - **Untergrenze und Obergrenze**: ermöglicht die Eingabe von Untergrenze und Obergrenze

 - **Option "Klasse mit > -99"**: bei aktivierter Option werden Pegel/Werte unterhalb des untersten Klassenwerts in die Darstellung einbezogen

 - **Option "ganzzahlige Werte bevorzugen"**: Ist die Option "Untergrenze und Obergrenze" gewählt, kann diese Option aktiviert werden. In diesem Fall werden die Klassengrenzen als ganzzahlige Werte erzeugt.

- **Untergrenze/Obergrenze/Klassenbreite**: Werte in dB (auf eine Nachkommastelle)
9.1.5.3 Raster berechnen

Nach Anklicken dieses Befehls im Menü Raster oder dieses Symbols auf der Symbolleiste werden die Immissionspegel an den - durch die Raster- spezifikation einerseits und das/die Rechengebiet/e bzw. den Umgriff andererseits - definierten Rasterpunkten berechnet und unter Verwendung der aktuellen Rasterdarstellung (siehe Kapitel 9.1.5.2) angezeigt. Gleichzeitig werden die Pegel an den vorhandenen Immissionspunkten neu berechnet. Vor der Berechnung werden die Objektdaten einer Konsistenzprüfung (siehe Kapitel 9.1.3.7) unterzogen.

Ist die Option "Echogramme und Abklingkurven berechnen ...
Raster" auf der Registerkarte "RIA-Auswertung" (siehe Kapitel 9.1.3.1) aktiviert, so werden - unabhängig von den auf der Registerkarte gewählten raumakustischen Gütemaßen - alle Gütemaße im Raster auf der eingestellten Rasterhöhe (siehe Kapitel 9.1.5.1) berechnet. Nach der Berechnung wird im rechten Teil der Symbolleiste ein zusätzliches Listenfeld angezeigt, aus dem der Pegel L_p oder ein raumakustisches Gütemaß für die Rasterdarstellung gewählt werden kann:

Es sei darauf hingewiesen, dass sich die Darstellung von raumakustischen Gütemaßen im Raster ausschließlich auf die gewählte Rasterhöhe bezieht. Daher sind alle anderen Höhen aus dem Listenfeld "Rasterhöhe" nicht wählbar ("ausgegraut"). Wählen Sie zunächst "Lp" aus dem rechten Listenfeld aus, um den Pegel im Raster bei verschiedenen Höhen erneut anzuzeigen.
Zur Anzeige der Ergebnisraster für die raumakustischen Gütemaße ist zudem das Listenfeld "Frequenz" relevant. Dabei gelten nachfolgende Regeln:

- für Lp: Die Anzeige erfolgt für "Gesamt" und für alle Oktaven des gewählten Frequenzbereichs.
- für T30, T20, T10, EDT, D50, C50, C80, TS: Die Anzeige erfolgt für alle Oktaven des gewählten Frequenzbereichs (Anzeige für "Gesamt" ist ungültig).
- für ALcons%_2k, ALcons%_500_2k, STI_male, STI_female, STIPA, CIS: Die Anzeige ist unabhangig von der eingestellten Oktave bzw. "Gesamt" (d.h. es erfolgt immer eine Anzeige des Ergebnisrasters).

Berechnungsfortschritt

Während der Berechnung wird der Berechnungsfortschritt in einem separaten Dialog angezeigt, über den die Rasterberechnung abgebrochen werden kann.
9.1.5.4 Raster öffnen

Weiterhin können folgende ASCII-Rasterformate von CadnaR gelesen werden:

• *.txt (Textdatei, Spalten mit Tabulatormarken getrennt)
• *.dat (Binärdatei)
• *.csv (comma-separated values)

9.1.5.5 Raster speichern

Folgende Rasterformate können von CadnaR geschrieben werden:

• *.txt (Textdatei, Spalten mit Tabulatormarken getrennt)
• *.dat (Binärdatei)
• *.csv (comma-separated values)

9.1.5.6 Raster löschen

Dieser Befehl löscht das aktuelle Raster ohne Rückfrage.
Kapitel 9 - Referenz

9.1.5.6 Raster löschen
9.1.5.7 Arithmetik

Der Dialog **Rasterarithmetik** im Menü **Raster** ermöglicht es, ein neues Raster auf Basis von bis zu 6 Eingangsrastern (R1..R6) zu berechnen.

Verwende Raster (aktuelles Raster ist R0): Das aktuell berechnete Raster kann mit R0 adressiert werden. Laden Sie durch Klick auf die Dateiauswahlsymbole bis zu 6 gespeicherte Raster.

Ausdruck für neues Raster: In diesem Feld kann - unter Verwendung der Raster R0 und R1 bis R6 - eine Formel nach den Regeln für Formeln und Operatoren (siehe unten) eingetragen werden. Nach Klick auf OK wird unter Anwendung dieses Ausdruckes eine neue Rasterkarte erzeugt.

Beispiel:
- Raster R1 mit Hindernissen und Abschirmung
- Raster R2 ohne Hindernisse
- Differenzraster R2-R1 zeigt Schirmwirkung (\(A_{\text{bar}}\)) als Rasterkarte
• **Neue Raster ist Schnittmenge der Eingaberaster**: Sind mehrere Raster geladen dann bewirkt diese Option, dass nur der Rasterbereich, der eine Schnittmenge der Eingaberaster (Rasterüberlappung) bildet, ausgewertet und angezeigt wird.

• **Gesamtpegel neu berechnen**
 - *Option deaktiviert*: Die Oktavbandpegel und der Gesamtpegel werden für das neue Raster aus den jeweiligen Pegeln der Einzelraster berechnet (Gesamtpegel aus den Gesamtpegeln der Einzelraster).
Formeln und Operatoren

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>==</code></td>
<td>gleich</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>ungleich</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>größer gleich</td>
</tr>
<tr>
<td><code>></code></td>
<td>größer</td>
</tr>
<tr>
<td><code><=</code></td>
<td>kleiner gleich</td>
</tr>
<tr>
<td><code><</code></td>
<td>kleiner</td>
</tr>
<tr>
<td><code>++</code></td>
<td>energetische Addition</td>
</tr>
<tr>
<td><code>--</code></td>
<td>energetische Subtraktion</td>
</tr>
<tr>
<td><code>+</code></td>
<td>Addition</td>
</tr>
<tr>
<td><code>-</code></td>
<td>Subtraktion</td>
</tr>
<tr>
<td><code>*</code></td>
<td>Multiplikation</td>
</tr>
<tr>
<td><code>/</code></td>
<td>Division</td>
</tr>
<tr>
<td><code>(</code></td>
<td>Klammer auf</td>
</tr>
<tr>
<td><code>)</code></td>
<td>Klammer zu</td>
</tr>
<tr>
<td><code>max</code></td>
<td>Maximum, Beispiel: max(1,2) = 2</td>
</tr>
<tr>
<td><code>min</code></td>
<td>Minimum, Beispiel: min(1,2) = 1</td>
</tr>
<tr>
<td><code>pow</code></td>
<td>Potenz: pow(a, b) = a^b</td>
</tr>
<tr>
<td><code>log10</code></td>
<td>Logarithmus zur Basis 10</td>
</tr>
<tr>
<td><code>log</code></td>
<td>Logarithmus zur Basis e</td>
</tr>
<tr>
<td><code>exp10</code></td>
<td>10 hoch x</td>
</tr>
<tr>
<td><code>exp</code></td>
<td>e hoch x</td>
</tr>
<tr>
<td><code>sqrt</code></td>
<td>Quadratwurzel</td>
</tr>
<tr>
<td><code>sin</code></td>
<td>Sinus (Argument im Bogenmaß)</td>
</tr>
<tr>
<td><code>cos</code></td>
<td>Cosinus</td>
</tr>
<tr>
<td>Funktion</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>tan</td>
<td>Tangens</td>
</tr>
<tr>
<td>ctg</td>
<td>Cotangens</td>
</tr>
<tr>
<td>deg2rad</td>
<td>Umwandlung Grad in Bogenmaß</td>
</tr>
<tr>
<td>rad2deg</td>
<td>Umwandlung Bogenmaß in Grad</td>
</tr>
<tr>
<td>arcsin</td>
<td>Arcus-Sinus</td>
</tr>
<tr>
<td>arccos</td>
<td>Arcus-Cosinus</td>
</tr>
<tr>
<td>arctan</td>
<td>Arcus-Tangens</td>
</tr>
<tr>
<td>iif</td>
<td>iif(x, a, b) ist a wenn x!=0, b wenn x==0</td>
</tr>
<tr>
<td>rand(x,y)</td>
<td>erzeugt Zufallszahl im Intervall x bis y</td>
</tr>
<tr>
<td>abs</td>
<td>Absolutbetrag</td>
</tr>
<tr>
<td>round(x,y)</td>
<td>rundet die Zahl x auf die y-te Dezimalen, z.B.:</td>
</tr>
<tr>
<td></td>
<td>round(x.4) = x</td>
</tr>
<tr>
<td></td>
<td>round(x.5) = x+1</td>
</tr>
<tr>
<td></td>
<td>round(-x.5) = -x</td>
</tr>
<tr>
<td></td>
<td>round(-x.6) = -x-1</td>
</tr>
<tr>
<td>floor(x)</td>
<td>integer of x</td>
</tr>
<tr>
<td></td>
<td>d.h.:</td>
</tr>
<tr>
<td></td>
<td>floor(x.5) = x</td>
</tr>
<tr>
<td></td>
<td>floor(-x.5) = -x-1</td>
</tr>
</tbody>
</table>
9.1.5.8 Statistik

Im Dialog Rasterstatistik werden angezeigt:

- die Gesamtzahl der Rasterpunkte
- das arithmetische Mittel aller Pegelwerte im Raster im gewählten Frequenzband
- die Anzahl der Rasterpunkte je Pegelbereich
- die Rechenzeit im Format [hh:mm:ss]

Dialog Rasterstatistik
9.1.5.9 Räumlich gemittelte Nachhallzeit (Raster)

In diesem Diagramm werden die räumlich, über alle Rasterpunkte gemittelten Nachhallzeiten T30, T20, T10 oder EDT über der Frequenz angezeigt.

Diese Nachhallzeiten werden aus den Echogrammen an allen Rasterpunkten ermittelt. Daher ist zur Berechnung das Teilchenmodell erforderlich (Berechnungsverfahren „Spiegelquellen --> Teilchen“ oder „Teilchen“, siehe Kapitel 9.1.3.1). Zudem muss die Option „Echogramme und Abklingkurven berechnen ... für Raster“ auf der Registerkarte „RIA-Auswertung (siehe Kapitel 9.1.3.1, Abschnitt "Registerkarte „RIA-Auswertung“") aktiviert sein.

Über das Menü Darstellung kann die Anzeige der o.g. Nachhallzeit-Verläufe ein- und ausgeschaltet werden. Zusätzlich können angezeigt werden:

- die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 125 bis 4000 Hz) für die Raumakustik-Klassen A, B und C von Einzelbüros oder von Mehrpersonenbüros nach VDI-Richtlinie 2569:2016-02 oder
die minimal empfohlene und die maximal zulässigen Nachhallzeiten (von 63 bis 8000 Hz) für die fünf Nutzungsarten RG A1 bis RG A5 der Raumgruppe A nach DIN 18041:2015-02:

- RG A1 Musik
- RG A2 Sprache / Vortrag
- RG A3 Unterricht / Kommunikation sowie Sprache/Vortrag inklusiv
- RG A4 Unterricht / Kommunikation inklusiv
- RG A5 Sport

Diagramm-Legende siehe Kapitel 5.11, Abschnitt "Schaltflächen"

Die Anforderungen an die Nachhallzeit für die fünf Nutzungsarten RG A1 bis RG A5 nach DIN 18041:2015-02 hängen vom Raumvolumen ab. Standardmäßig wird das sich aus den Raumabmessungen im Dialog Raum/Raumdaten (siehe Kapitel 9.1.4.2) berechnete Raumvolumen verwendet.

Falls das effektive Raumvolumen von dem oben genannten abweicht (z.B. nach Eingabe von Hindernisquadern, um andere - nicht rechteckige - Raumgeometrien zu modellieren), kann nach Aktivierung dieser Option das zur Berechnung der Anforderungen nach DIN 18041 anzusetzende Raumvolumen (in m³) eingegeben werden.
9.1.6 Menü Voxelgitter

Das Voxelgitter ist ein volumetrisches Raster, mit dem die Pegelwerte in allen drei Raumkoordinaten gleichzeitig berechnet werden können. Der Begriff *voxel* (Volumenelement) ist eine Wortkombination aus den englischen Begriffen *volumetric* und *pixel*.

Standardmäßig können nur äquidistante Voxelgitter bzw. Raster (siehe Kapitel 9.1.5) spezifiziert werden. Um nicht-äquidistante Voxelgitter zu verwenden, siehe Kapitel 9.1.4.14 "Sonstiges".

Geben Sie den Abstand dx für die Abstände der einzelnen Volumenelemente in x-Richtung des Voxelgitters an. Bei Start der Berechnung des Voxelgitters wird das gesamte Raumvolumen mit Voxel belegt und berechnet (Standard-Voxelabstand dx=dy=dz=1m). Bei Änderungen wird nachgefragt, ob das jeweils andere Gitter auf die gleiche Schrittweite angepasst werden soll.

Nach Anklicken dieses Befehls im Menü Voxelgitter wird das gesamte Raumvolumen mit Volumenrasterpunkten belegt (entsprechend des Voxelabstandes) und an diesen Punkten der Immissionspegel berechnet.
Gleichzeitig werden die Pegel an den vorhandenen Immissionspunkten neu berechnet. Die Werte im 2D-Raster werden für die eingestellten Rasterpunktabstände und -höhe aus dem Voxelgitter durch tri-lineare Interpolation bestimmt, falls die 2D-Rasterhöhe nicht ein geradzahliges Vielfaches des Abstands dz ist. Vor der Berechnung werden die Objektdaten einer Konsistenzprüfung (siehe Kapitel 9.1.3.7) unterzogen.

Während der Berechnung wird der Berechnungsfortschritt in einem separaten Dialog angezeigt, über den die Berechnung des Voxelgitters abgebrochen werden kann.

Rasterwerte aus Voxelgitter interpolieren

Bei Auswahl dieses Befehls werden die Pegelwerte im 2D-Raster unter Verwendung der eingestellten Rasterpunktabstände und -höhe aus dem Voxelgitter durch tri-lineare Interpolation bestimmt.

Dies erfolgt auch dann, wenn die 2D-Rasterhöhe mit einem geradzahligen Vielfachen des Abstands dz des Voxelgitters übereinstimmt.

 быстро Aus Gründen der Rechenzeit weist das Voxelgitter i.d.R. gleiche große oder größere Abstände dx, dy und dz auf als die Rasterpunktabstände des 2D-Rasters. Die Funktion ermöglicht, die Darstellung des 2D-Rasters an die Ergebnisse des Voxelgitters anzupassen.

Immissionspunkte aus Voxelgitter interpolieren

Bei Auswahl dieses Befehls werden die Pegelwerte an Immissionspunkten aus dem Voxelgitter durch tri-lineare Interpolation berechnet.

Dies erfolgt auch dann, wenn die Immissionspunkthöhe mit einem geradzahligen Vielfachen des Abstands dz des Voxelgitters übereinstimmt.

 быстро Diese Funktion ermöglicht, die Pegel an nachträglich eingefügten oder verschobenen Immissionspunkten auf Basis des vorliegenden Voxelrasters zu bestimmen.

Löschen

Dieser Befehl löscht das aktuelle Voxelgitter ohne Rückfrage.
9.1.7 Menü Tabellen

Alle über die Grafik eingefügten Objekte werden als Datensätze automatisch auch in die entsprechende Objektabelle übernommen und umgekehrt. Ein Objekt, das mit seinen Daten über die Tabelle eingegeben wurde, erscheint nach Schließen der Tabelle als grafisches Objekt im Hauptfenster von CadnaR.

Im Menü Tabellen sind alle Objekte, die in CadnaR eingefügt wurden, in den entsprechenden Objekt-Tabellen als Datensätze zusammengefasst. Durch ein Häkchen vor dem Menüeintrag wird angezeigt, dass mindestens ein Objekt in der entsprechenden Tabellen vorhanden ist.

Ein Mausklick auf ein Objektsymbol im Werkzeugkasten (siehe Kapitel 3.3) bei gleichzeitig gedrückter gehaltener ALT-Taste öffnet die jeweilige Objektabelle.
Eine geöffnete Objektabelle kann mit der ESC-Taste geschlossen werden.
Synchronisierung

Datensätze bearbeiten

Datensätze können eingefügt, bearbeitet, gelöscht oder kopiert werden (siehe Kapitel 9.1.7.3 "Kontextmenü in Tabellen").

Tastatur-Befehle

In Objekttabellen können die Inhalte einzelner Tabellenzeilen kopiert (STRG+C) und in eine neue oder eine vorhandene Zeile eingefügt werden (STRG+V).

Zu den Menübefehlen Variante, Gruppe, Teilpegel und ObjectTree siehe Kapitel 8 - Projektorganisation.
9.1.7.1 Schaltflächen in Tabellen

In den über das Menü Tabellen zugänglichen Objekttabellen stehen folgende Schaltflächen zur Verfügung:

- **Schließen**: schließt die Tabelle und übernimmt eventuelle Änderungen
- **Editieren**: Bei Klick auf diese Schaltfläche wird der Dialog **Objekt-tabelle editieren** geöffnet (siehe Kapitel 9.1.7.2). Die Editierfunktion steht für alle CadnaR-spezifischen Objekte zur Verfügung.
- **Sync. Grafik**: zentriert das gewählte Objekt (nach vorherigem Klick in eine Tabellenzeile) auf dem Bildschirm, begrenzt durch die Größe des Umgriffs
- **Kopieren**: kopiert die formatierte Tabelle in die Zwischenablage. Alternativ kann die Tastenkombination STRG+C verwendet werden. Die einzelnen Tabellenspalten sind durch Tabulatormarken (TAB) voneinander getrennt. Die Tabelle kann in eine andere Anwendung (z.B. MS-Word, MS-Excel) eingefügt werden (Tastenkombination STRG+V).
- **Drucken**: öffnet den Dialog Drucken oder gibt die Tabelle über einen installierten Drucker aus
- **Schriftart**: Auswahl der Schriftart-Optionen. Die Einstellungen gehen mit dem Schließen des aktuellen Projekts verloren.
- **Hilfe**: öffnet die tabellen-spezifische Hilfe

Die Spaltenbreite von Tabellen kann je nach Bedarf verändert werden. Zum Verkleinern oder Vergrößern der Spaltenbreite positionieren Sie den Mauszeiger auf eine der vertikalen Spaltentrennlinien in den beiden Kopfzeilen der Tabelle. Der Mauszeiger nimmt die Form eines horizontalen Doppelpfeils an, um anzuzeigen, dass jetzt die Spaltenbreite verstellbar ist. Ziehen Sie dazu bei gedrückt gehaltener linker Maustaste die Maus nach rechts zur Vergrößerung der Spaltenbreite oder nach links zur Verkleinerung der Spaltenbreite. Lassen Sie die Maustaste bei Erreichen der gewünschten Breite los.
Spalteneinträge voll sichtbar

Durch Doppelklick auf eine der vertikalen Spaltentrennlinien in den beiden Kopfzeilen wird die Spaltenbreite der Tabelle automatisch an die größte Länge der Einträge in allen Spalten angepasst. Falls die Tabellenbreite größer als die Bildschirmbreite ist, wird eine horizontale Bildlaufleiste um unteren Bildrand eingeblendet.

Spaltenbreite automatisch anpassen

Zur Anpassung der Tabellenbreite an die jeweils zur Verfügung stehende Bildschirmbreite doppelnlicken Sie bei gedrückt gehaltenen Umschalttaste (Shift-Taste) auf eine der vertikalen Spaltentrennlinien in den beiden Kopfzeilen der Tabelle. CadnaR passt die Gesamtbreite der Tabelle automatisch an die Bildschirmbreite an, wobei die Breite jeder Spalte abhängig von der Länge der schon vorhandenen Einträge eingestellt wird.

Spalten erneut sichtbar

Durch manuelles Verstellen kann die Breite einer Spalte auf Null reduziert werden. Die jeweilige Spalte ist dann nicht mehr sichtbar. Zum erneuten Anzeigen nicht mehr angezeigter Spalten können Sie sowohl die Funktion „Spalteneinträge voll sichtbar;“ als auch die Funktion „Spaltenbreite automatisch anpassen“ verwenden.

♣ Eine Nutzer-definierte Spaltenbreite geht beim Beenden von CadnaR verloren.
9.1.7.2 Objekttabelle editieren

In diesem Dialog kann der Inhalt und die Formatierung einer in den lokalen Bibliotheken vorhandenen Objekttabelle editiert werden. Im Ausgangszustand ("Defaulttabelle") wird die CadnaR-intern festgelegte Formatierung verwendet. Benutzerdefinierte Objekttabellen-Formate können gespeichert und vorhandene Formate geöffnet werden.

Basis der Formatdefinition sind die jeweiligen Objektattribute (siehe Kapitel 9.3). Daher sind die Objekttabellenformate objektspezifisch. Das bedeutet, dass - zum Beispiel - ein für das Objekt "Punktquelle" gespeichertes Format, nicht für das Objekt "Immissionspunkt" verwendet werden kann.

Dialog **Objekttabelle editieren** (hier für Objekt „Punktquelle“)
Kapitel 9 - Referenz

9.1.7.2 Objekttabelle editieren

Spalte einfügen
Zum Anlegen einer neuen Spalte drücken Sie entweder die EINFÜG-Taste oder mit der rechten Maustaste aus dem Kontextmenü **Einfügen vorher/nachher**.

Tabellenzeilen per Drag & Drop verschieben
Nach Klick in eine Tabellenzeile kann diese bei gedrückt gehaltener Maustaste an eine neue Position innerhalb der Tabelle verschoben werden.

Dialogoptionen

Defaulttabelle
Ist diese Option gewählt (Standard), so wird die CadnaR-intern festgelegte Formatierung verwendet. In diesem Fall ist die darunter stehende Tabelle nicht editierbar. Die Tabelle enthält die standardmäßigen Spaltenüberschriften, Attribut-Zuweisungen und Formatierungen.

benutzerdefinierte Tabelle
Ist diese Option gewählt, so kann - auf Basis des Formats der Defaulttabelle - die Formatierung definiert werden. In diesem Fall ist die Definitionstabelle editierbar.

Tabellenspalten editieren
Nach Doppelklick in eine Zeile öffnet sich der Dialog **Tabellenspalte**, in dem die Überschriften, die Spalteninhalte und -formate festgelegt werden (siehe unten).

Tabellenzeilen per Drag & Drop verschieben
Nach Klick in eine Tabellenzeile kann diese bei gedrückt gehaltener Maustaste an eine neue Position innerhalb der Tabelle verschoben werden. Lassen Sie die Maustaste nach dem Verschieben los.

Schaltfläche "übernehme Default"
Wurde das Tabellenformat in der Option "benutzerdefinierte Tabelle" geändert, so kann durch Klick auf diese Schaltfläche das Format der Defaulttabelle wiederhergestellt werden. Dabei werden die nutzerdefinierten Einträge in der Tabelle ohne Rückfrage überschrieben.

die **Wenn das Tabellenformat über die Option "benutzerdefinierte Tabelle" geändert wurde und danach auf die Option "Defaulttabelle" umgeschaltet wird, so bleiben die geänderten Einstellungen in der Definitionstabelle erhalten, werden aber nicht angewandt.

Datei

DataKustik
Bei gewählter Option "benutzerdefinierte Tabelle" kann hiermit eine (objektspezifische) Tabellenformat-Datei geöffnet werden (Dateinendung *.tbl).

Bei gewählter Option "benutzerdefinierte Tabelle" kann hiermit eine (objektspezifische) Tabellenformat-Datei gespeichert werden (Dateinendung *.tbl).

Tabellenformat-Dateien anderer Objekttypen können zwar ausgewählt werden, zeigen aber nur die Spalten an, die mit den Objektattributen des aktuellen Objekts übereinstimmen. Daher ist es sinnvoll, in den Namen von Tabellenformat-Dateien einen Hinweis auf den Objekttyp aufzunehmen (z.B. "Schirm_TabF_1.tbl").

Schaltfläche "Öffnen"

Schaltfläche "Speichern"
Dialog Tabellenspalte

Zum Editieren der Spalte wird entweder in die entsprechende Zeile im Dialog **Objekttabelle editieren** doppelt geklickt oder der Befehl **Editieren** aus dem Kontextmenü ausgewählt. Es öffnet sich der Dialog **Tabellenspalte**, in dem die Überschriften eingegeben und der Spalteninhalt definiert wird.

Überschriften, Zeile 1..3

Es können bis zu drei Zeilenüberschriften für jede Spalte definiert werden. Um eine Spaltenüberschrift über mehrere Spalten hinweglaufen zu lassen, geben Sie den Ausdruck PREV ein (in Großbuchstaben).

Listenfeld "Attribut"

Dieses Listenfeld bestimmt den anzuzeigenden Spalteninhalt. Es stehen alle jeweiligen Objektattribute zur Verfügung. Wenn die Option „MEMOTXTVAR“ gewählt ist, ist zusätzlich der Name der Textvariablen einzugeben.

Spaltenbreite

Folgende Optionen stehen zur Verfügung:

- **auto**: Die Spaltenbreite wird automatisch auf Basis des verfügbaren Platzes eingestellt (Standard).
- **in mm**: Geben Sie eine feste Spaltenbreite in mm ein.
- **in Zeichen**: Geben Sie eine feste Spaltenbreite in Anzahl der darzustellenden Zeichen ein.
- **auto (hist.)**: Dies ist der Ausgangszustand. Historisch wurde eine automatische Spaltenbreite für Textattribute und für numerische Attribute ein Spaltenbreite entsprechend der intern festgelegten Stellenzahl verwendet.
In der Spalte der Definitionstabelle im Dialog **Objekttabelle** editieren werden folgende Typabkürzungen verwendet: "auto" = A, "in mm" = M, "in Zeichen" = C, "auto (hist.)" nicht vorhanden.

Geben Sie die Anzahl der anzuzeigenden Nachkommastellen ein. Die letzte Nachkommastelle wird auf 0,5 gerundet.

gewünschte Ausrichtung in der Tabellenspalte (siehe Vorschau)

zum Wechseln zur vorigen/nächsten Tabellenspalte

erzeugt eine neue Tabellenzeile unterhalb der aktuellen Spalte

Nachkommastelle
Auszrichtung
Pfeiltasten <|-|>

Schaltfläche "Neu"
Kapitel 9 - Referenz

9.1.7.2 Objekttabelle editieren
9.1.7.3 Kontextmenü in Tabellen

Über das Kontextmenü von Tabellen stehen alle oder ein Teil der folgenden Befehle zur Verfügung.

Der Dialog für den aktuell gewählte Datensatz wird zum Editieren geöffnet. Alternativ mit der Maus in die Tabellenzeile doppelklicken.

Der aktuell gewählte Datensatz wird ohne Rückfrage gelöscht (alternativ Taste DEL drücken). Der Löschvorgang kann rückgängig gemacht werden (siehe Kapitel 9.1.2). Beim Schließen der Objekttabelle wird/werden das/die Objekte auch im Hauptfenster von CadnaR gelöscht.

Es wird eine neue Zeile vor dem aktuell gewählten Datensatz eingefügt (alternativ Taste EINF drücken).

Es wird eine neue Zeile nach dem aktuell gewählten Datensatz eingefügt.
Über den Dialog **Spalte verändern** können alle Zeilen oder Zeilenbereiche einer Tabellenspalte durch neue Werte oder Einträge ersetzt werden.

DIALOGOPTIONEN

Zeilenbereich/Zeilenanzahl

Die Veränderung wird entweder auf die ganze Tabelle (Standardereinstellung) oder auf alle Zeilen unterhalb oder oberhalb der Cursor-Position angewandt. Falls "Cursor nach unten/oben" gewählt ist, kann die Anzahl der betroffenen Zeilen eingegeben werden (einschl. der markierten Zeile).

Option "Arithmetisch"

Der vorhandene Zahlwert kann durch einen anderen konstanten Wert oder durch einen aus dem vorhandenen berechneten neuen Wert ersetzt werden. Es stehen alle Operatoren zur Verfügung (siehe Kapitel 9.1.5.7). Der Buchstabe "x" steht für den vorhandenen Wert.

Beispiele:

<table>
<thead>
<tr>
<th>Ausdruck</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>x - 55</td>
<td>Differenz des Spalteninhalts und der Zahl 55</td>
</tr>
<tr>
<td>x + 2</td>
<td>erhöht den Spaltenwert um 2</td>
</tr>
<tr>
<td>x ++ 50</td>
<td>energetische Summation des vorhandenen Pegels mit dem Pegelwert 50 dB</td>
</tr>
<tr>
<td>x -- 50</td>
<td>Subtraktion von 50 vom vorhandenen Wert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesuchtes Element</th>
<th>Operator</th>
<th>Beispiel</th>
<th>findet</th>
</tr>
</thead>
<tbody>
<tr>
<td>einzelnes Zeichen</td>
<td>?</td>
<td>m?t</td>
<td>„mit“, „Mut“</td>
</tr>
<tr>
<td>Zeichenfolge</td>
<td>*</td>
<td>l*t</td>
<td>„laut“, „liegt“, „Licht“</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>alle Zeichen</td>
</tr>
<tr>
<td>eines der angegebenen Zeichen</td>
<td>[]</td>
<td>s[ie]zit</td>
<td>„sitzt“, „setzt“</td>
</tr>
<tr>
<td>einzelnener Buchstabe innerhalb einer Alphabetfolge</td>
<td>[]</td>
<td>[m-k]straße</td>
<td>„Nstraße“, „Ostraße“ aber nicht „Bstraße“. Die Alphabetfolge muss in aufsteigender Reihenfolge angegeben werden.</td>
</tr>
<tr>
<td>einzelnes Zeichen, mit Ausnahme der Zeichen in Klammern</td>
<td>[]</td>
<td>[^b]aut</td>
<td>„laut“, aber nicht „baut“</td>
</tr>
<tr>
<td>einzelne Zahl 1..9</td>
<td>[]</td>
<td>[7]</td>
<td>7, aber nicht 17 oder 177</td>
</tr>
<tr>
<td>mehrstellige Zahl</td>
<td>[]</td>
<td>[1][2][3]</td>
<td>123, aber nicht 121</td>
</tr>
<tr>
<td>eine der angegebenen Zahlen</td>
<td>[]</td>
<td>[123]</td>
<td>1, 2 oder 3, aber nicht 11 oder 12</td>
</tr>
</tbody>
</table>

| Logische Verknüpfung | | 100|200 | 100 oder 200 |
|----------------------|----------|-----------|----------------|
| | [] | ab(c|de)f | abcf oder abdef |
Kapitel 9 - Referenz
9.1.7.3 Kontextmenü in Tabellen

- **Feld "Ersetzen durch":** In diesem Feld können beliebige Zeichenfolgen mit den im Muster durch Klammern gekennzeichneten Zeichenkettenbereiche kombiniert werden. Dabei wird \1... \n als Platzhalter für diese gekennzeichneten Zeichenkettenbereiche verwendet:

\1 steht für die gesamte vorhandene Zeichenkette
\2 steht für den ersten geklammerten Zeichenkettenbereich
\n steht für den (n-1)ten geklammerten Zeichenkettenbereich

Beispiele:

vorhandener Wert: FBxyz_01
Eintrag im Feld "Suchen nach": (*)xyz_(*)

<table>
<thead>
<tr>
<th>Eintrag im Feld „Ersetzen durch“</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>\1</td>
<td>FBxyz_01 (d.h. die Original-Zeichenkette)</td>
</tr>
<tr>
<td>\2uvw_\3</td>
<td>FBuvw_01 (d.h. "xyz" ersetzt durch "uvw")</td>
</tr>
<tr>
<td>\3u\2</td>
<td>01uFB (d.h. Reihenfolge der Zeichenkette vertauscht plus mit- tiges "u")</td>
</tr>
</tbody>
</table>

- **Groß-/Kleinschreibung:** Ist diese Option aktiviert, so ist die Groß-/Kleinschreibung im Feld "Suchen nach" relevant.

- **Ersetze ### durch Nummerierung:** Ist diese Option aktiviert, so werden Doppelkreuze im Feld "Ersetzen durch" durch eine aufsteigende Zählziffer ersetzt (Anzahl # = Stellenanzahl).

Sortieren

Über den Dialog **Sortieren** können die Inhalte der aktuellen Tabellenspalte sortiert werden.

Es stehen folgende Optionen zur Verfügung:
• **Alphabetisch:** Die resultierende Sortierung erfolgt in alphabetischer Reihenfolge.

• **Numerisch:** Die resultierende Sortierung erfolgt in numerischer Reihenfolge.

• **aufsteigend:** Nach der Sortierung stehen die kleinsten Werte am Tabellenkopf.

• **absteigend:** Nach der Sortierung stehen die größten Werte am Tabellenkopf.
Kapitel 9 - Referenz
9.1.7.3 Kontextmenü in Tabellen
9.1.7.4 Tabelle Teilpegel

Die Tabelle Teilpegel enthält die Teilpegel aller Quellen an allen Immissionspunkten.

Tabelle Teilpegel für 3 Immissionspunkte

Diese Tabelle weist folgende Spalten auf:

- **M**: Aktivierungszustand der Quelle (+: aktiviert, -: deaktiviert)
- **Typ**: Quelltyp (PQ, LQ, FQ, FV, QQ: Punkt-, Linien-, Flächenquelle, vert. Flächenquelle, Quaderquelle)
- **Bezeichnung**: Name der Quelle
- **Teilpegel**: A-bewerteter Schalldruckpegel und lineares Oktavpegelspektrum an allen Immissionspunkten (nach erfolgter Berechnung)
9.1.7.5 Sonstiges

Dieser Befehl im Menü Tabellen|Sonstiges ermöglicht, die mit Hilfe der Funktion "Generiere Strahlen (als Hilfspolygone)" für einen oder mehrere Immissionspunkte erzeugten Strahlpolygone global aus der 2D-Ansicht und der 3D-Ansicht zu löschen.

Die Koordinaten von Immissionspunkten können aus ASCII-Dateien importiert werden (Dateiformate *.txt; *.dat; *.csv). Die Dateistruktur besteht aus hintereinander stehenden Zeilen, wobei die Spalten durch Tabulator-Marken (TAB) voneinander getrennt sind.

Die Spalten enthalten folgende Daten:

Bezeichnung | x | y | z-Koordinate

Beispiel:

Bei Auswahl dieses Befehls wird die aktuelle INI-Datei geöffnet und kann anschließend in einem Texteditor editiert werden.
Nach Auswahl dieses Befehls wird ein Dialog geöffnet, mit dem eine Hüllfläche mit zugehörigen Messpunkten (Immissionspunkten) erzeugt werden kann. Mit Hilfe dieser Anordnung kann eine Schallleistungspegelmessung in der Umgebung einer beliebigen Quellanordnung mit CadnaR simuliert werden. Im Zuge der Hüllflächen-Erzeugung wird für jeden Immissionspunkt eine Textvariable erzeugt (bestehend aus dem ID-Prefix, siehe unten, und dem Suffix „_S“), die den Anteil der Hüllfläche (in m²) an diesem IP enthält.

Falls die simulierte Schallleistungspegelmessung in einem Halb-Freifeld erfolgt, kann der Befehl Freifeld-Simulation berechnen (Menü Berechnung, siehe Kapitel 9.1.3.6) zur Berechnung verwendet werden. In diesem Fall ist es nicht erforderlich, den Raum bzw. die Raumbegrenzungsflächen umzurüsten (voll-absorbierende Wände, reflektierender Boden).

![Dialog Hüllfläche generieren](image-url)
• Rechteck/Quader/Kreis/Kugel: Auswahl der Hüllflächen-Form

 - vertikal: Bei Rechteck und Kreis können vertikale Flächen erzeugt werden.

 - halb: Bei Quader und Kugel wird nur die obere Hälfte der Hüllfläche erzeugt.

Bei aktivierter Option „Klasse 2 Messung“ wird geprüft, ob die Seitenlänge jeder Messfläche höchstens 3*d beträgt, wobei d der Messabstand (in m) ist. Gegebenenfalls werden weitere Messpunkte eingefügt, bis die Bedingung erfüllt ist.

• Mittelpunkt x/y/z (m): Mittelpunkt der Hüllfläche

• Abmessungen Länge (x), Breite (y), Höhe (z): Ausdehnung der Hüllfläche

Abhängig von der gewählten Hüllflächen-Form stehen eine oder mehrere der folgenden Optionen zusätzlich zur Verfügung:

• Radius (m): bei Kreis oder Kugel
• Winkel (°): Drehwinkel zur Horizontalen
• Schrittweite dLBH (m)
• Schrittweite dPhi (°): bei Kreis oder Kugel
• Schrittweite dTheta (°): nur bei Kugel
• Messabstand (m)
Hüllfläche auswerten

In dem sich öffnenden Dialog wird der ID-Prefix der auszuwertenden Hüllfläche abgefragt.

Geben Sie einen entsprechenden ID-Prefix ein und klicken Sie OK.

Falls die Immissionspunkte einer Gruppe (z.B. über den ObjectTree) zugewiesen wurden, ist die Gruppen-ID Bestandteil des hier einzugebenden ID-Prefix. Am einfachsten Kopieren Sie den Anfang des ID eines Immissionspunktes, der zu der jeweiligen Hüllfläche gehört, in das obige Feld.

Im Anschluss wird ein Dialog mit der Auswertung für die ausgewählte Hüllfläche angezeigt.

Beispiel
9.1.7.6 Lokale/globale Bibliotheken

In **CadnaR** gibt es lokale und globale Bibliotheken.

- Die **lokalen Bibliotheken** gehören zu einer Projektdatei und werden mit dieser gespeichert. Sie stehen nicht projektabhängig in andere Projektdateien zur Verfügung.

- Die **globalen Bibliotheken** steht projektabhängig in allen Projektdateien zur Verfügung und wird nicht in einer Projektdatei gespeichert. Somit sollten Daten mit größerem Gültigkeitsbereich in den globalen Bibliotheken verwaltet werden.

In den Bibliotheken können Datensätze über das Kontextmenü der Tabel len eingefügt, geändert oder gelöscht werden. Auf die lokalen und die globalen Bibliotheken kann in Objektdialogen zugegriffen werden. Die so durchgeführten Änderungen wirken sich jedoch nur aus, wenn der Objekt dialog mit OK verlassen wird.

Spektren aus den lokalen oder globalen Bibliotheken werden durch Angabe ihres ID-Kodes im Objektdialog referenziert.

Es stehen folgende lokalen und/oder globalen Bibliotheken zur Verfügung:

- Richtwirkung (lokal)
- Textbausteine (lokal)
- SET-T (lokal) - *siehe Handbuch SET*
- Störpegel (global)
- Absorptionsgrad von Produkten (global)

- Schallleistung (lokal & global)
- Schalldämmungen (lokal & global)
- Absorptionen (lokal & global)
- Streugrade (lokal & global)
- Symbole (lokal & global)
- 3D-Symbole (lokal & global)
- SET-S (lokal & global) - *siehe Handbuch SET*
In allen Bibliotheks-Tabellen stehen folgende Schaltflächen zur Verfügung:

- **OK**: schließt die Tabelle und übernimmt das ausgewählte Objekt
- **Abbruch**: schließt die Tabelle, ohne Daten zu übernehmen
- **Kopieren**: kopiert die formatierte Tabelle in die Zwischenablage. Alternativ kann die Tastenkombination STRG+c verwendet werden. Die einzelnen Tabellenspalten sind durch Tabulatormarken (TAB) von einander getrennt. Die Tabellendaten können in eine andere Anwendung (z.B. MS-Word, MS-Excel) eingefügt werden (Tastenkombination STRG+v).
- **Drucken**: öffnet den Dialog Drucken oder gibt die Tabelle über einen installierten Drucker aus
- **Schriftart**: Auswahl der Schriftart-Optionen. Die Einstellungen gehen mit dem Schließen des aktuellen Projekts verloren.

siehe Kapitel 9.1.7.3
In der Tabelle **Richtwirkung** werden neue Richtwirkungen angelegt und editiert (siehe Kapitel 9.1.7.3 "Kontextmenü in Tabellen"). Diese können über die Schaltfläche "Richtwirkung" einer Punktquelle zugewiesen werden. Nach Doppelklick auf eine neue Zeile wird der Dialog **Richtwirkung** geöffnet.

Dialog Richtwirkung

Die Bezeichnung wird im Listenfeld im Auswahldialog **Richtwirkung** über den Dialog **Punktquelle** (siehe Kapitel 5.2) angezeigt.

Die Pfeiltasten ermöglichen das Bewegen innerhalb der Tabelle, ohne den Dialog zu schließen.

Im Dialog **Richtwirkung: vereinfachte Eingabe** kann eine vereinfachte Richtwirkung auf Basis von Pegelkorrekturen (in dB) in 4 oder 8 Richtungen in der xy-Ebene und/oder in z-Richtung definiert werden.
• **verwende Richtwirkung nach unten**: Ist diese Option aktiviert, kann zusätzlich eine Richtwirkungskorrektur nach unten (in dB) eingegeben werden. Diese kann bei schwebenden Quaderquellen relevant sein.

• **Halbkugel**: Durch Aktivierung dieser Option kann eine halbkugelförmi ge Abstrahlung erzwungen werden. Eine Abstrahlung nach unten ist dann nicht mehr möglich.

• **verwende 8 horizontale Richtungen**: Ist diese Option aktiviert, so ist die Eingabe der Richtwirkung für 8 statt nur für 4 Abstrahlrichtungen in der xy-Ebene möglich.

Schaltfläche "Import"

Richtwirkungen können aus folgenden Dateiformaten gelesen werden:

- *.txt (Textdatei, Spalten mit Tabulatormarken getrennt)
- *.dat (Binärdatei)
- *.csv (comma-separated values)

Diese Importfunktion ermöglicht, nutzer-definierte Richtwirkung aus einem vorgegebenen Dateiformat zu importieren. Gehen Sie zum Erzeugen von nutzer-definierten Richtwirkungen wie folgt vor:

- Legen Sie eine neue Zeile in der Tabelle **Richtwirkung** an.
- Doppelklicken Sie in die neue Zeile.
- Exportieren Sie das Format der Richtwirkungsdatei über die Schaltfläche "Richtwirkung".
• Geben Sie dazu einen Namen ein und öffnen Sie Datei anschließend in einem geeigneten Editor (z.B. WordPad oder MS-Excel).

• Editieren Sie die Datei unter Verwendung der vorliegenden Richtwirkungsdaten. Falls die Richtwirkung nicht in 5°-Schritten vorliegt, interpolieren Sie linear zwischen den vorhandenen Werten (z.B. mit MS-Excel).

• Sichern Sie anschließend die Datei im Format *.txt, *.dat oder *.csv

Die Datei besteht aus folgenden Spalten und Zeilen:

• Headerinformationen (CadnaR-Richtwirkung, Version, Flags, Anzahl_Frequenzbaender)

• Richtwirkung in dB für Oktaven 125 bis 4000 Hz

• Zeilen: Richtwirkung über den Drehwinkel theta θ (obere Halbebene 0° bis 90°, untere Halbebene 90° bis 180°)

• Spalten: Richtwirkung über den Drehwinkel phi ϕ (0° bis 355°)

Beispiel:

<table>
<thead>
<tr>
<th>CadnaR-Richtwirkung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>2</td>
</tr>
<tr>
<td>Flags:</td>
<td>32</td>
</tr>
<tr>
<td>Anzahl_Frequenzbaender</td>
<td>9</td>
</tr>
<tr>
<td>Frequenzband Hz:</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>0°</td>
</tr>
<tr>
<td>0°</td>
<td>6.8</td>
</tr>
<tr>
<td>5°</td>
<td>6.47</td>
</tr>
<tr>
<td>10°</td>
<td>0.15</td>
</tr>
<tr>
<td>...</td>
<td>-7.73</td>
</tr>
<tr>
<td>170°</td>
<td>-5.8</td>
</tr>
<tr>
<td>180°</td>
<td>-5.8</td>
</tr>
<tr>
<td>Frequenzband Hz:</td>
<td>63</td>
</tr>
<tr>
<td>0°</td>
<td>7.1</td>
</tr>
<tr>
<td>5°</td>
<td>0.73</td>
</tr>
<tr>
<td>10°</td>
<td>0.27</td>
</tr>
<tr>
<td>...</td>
<td>-5.8</td>
</tr>
<tr>
<td>170°</td>
<td>-5.8</td>
</tr>
<tr>
<td>180°</td>
<td>-5.8</td>
</tr>
<tr>
<td>Frequenzband Hz:</td>
<td>8000</td>
</tr>
<tr>
<td>0°</td>
<td>13.6</td>
</tr>
<tr>
<td>5°</td>
<td>13.27</td>
</tr>
<tr>
<td>10°</td>
<td>12.93</td>
</tr>
<tr>
<td>...</td>
<td>12.6</td>
</tr>
<tr>
<td>180°</td>
<td>-8.4</td>
</tr>
</tbody>
</table>

ὁ Der Text in der 1.Tabellenspalte muss beibehalten werden!
Richtwirkungen können in folgenden Dateiformaten geschrieben werden:

- *.txt (Textdatei, Spalten mit Tabulatormarken getrennt)
- *.dat (Binärdatei)
- *.csv (comma-separated values)

Eingegebene oder importierte Richtwirkungen werden programmintern immer auf einen Summenpegel von 0 dB normiert, um den Schallleistungspegel der Quelle nicht zu verändern.

In diesem Dialog kann eine Richtwirkung entsprechend dem EingabefORMAT in CadnaA definiert werden.

Es handelt sich dabei um zur Vorwärtsrichtung (Richtung 0 Grad) axialsymmetrische Richtwirkungen in einer Ebene, wobei der Richtwirkungsektor frei orientiert werden kann (mit Angabe der xyz-Koordinaten des Richtwirkungsektors).

Eingegebene Richtwirkungen werden immer intern normiert, so dass sich durch Einbeziehung dieser Richtwirkung keine Änderung des Schallleistungspegels der Quelle ergibt (Summenpegel = Null).
• **Bezeichnung/ID**: Die eingegebene Bezeichnung wird im Listenfeld "Richtwirkung" des Dialogs **Richtwirkung** bei Punktquellen angezeigt.

• **Schaltfläche "Löschen"**: Die vorhandenen Werte werden ohne Rückfrage gelöscht.

• **Schaltfläche "Einfügen"**: Richtwirkungsdaten können über die Zwischenablage in den Dialog eingefügt werden. Bei Klick auf diese Schaltfläche werden die Werte, beginnend von der linken, oberen Zelle, eingefügt. Dabei werden Punkte oder Kommas als Dezimaltrenner akzeptiert.

Bei Anwendung der Koordinatentransformation auf Punktquellen wird der Richtwirkungsvektor mittransformiert. Führen Sie die Berechnung nach Transformation derartiger Quellen mit zugewiesener Richtwirkung erneut aus.

Um eingegebene Richtwirkungen in anderen Projekte zu verwenden, exportieren Sie die jeweilige Richtwirkung über den Dialog **Richtwirkung**.
Symbole (2D) und 3D-Symbole

In CadnaR sind zwei lokale Bibliotheken für Symbole vorhanden:

- **(normale) Symbole**: Dies sind Symbole, die in der 2D-Plandarstellung, aber nicht in der 3D-Spezialansicht angezeigt werden.

- **3D-Symbole**: Dies sind Symbole, die in der 2D-Plandarstellung nur als Rahmen, aber nicht mit ihren Inhalt dargestellt werden. Hingegen werden 3D-Symbole in der 3D-Spezialansicht angezeigt (siehe Kapitel 9.1.4.1).

Symbole (2D)

Unter **Tabellen|Bibliotheken (lokal)|Symbolbibliothek** kann der Nutzer eigene Bilder als Symbole importieren, die anschließend mit dem Objekt **Symbol** aus dem Werkzeugkasten verwendet können. Diese Funktion hat den Vorteil, dass unabhängig vom gewählten Maßstab die volle Auflösung eines Bildes zur Verfügung steht. Für ein Symbol können die Farbe und der Winkel sowie das Verhalten bei Maßstabsveränderungen festgelegt werden.
9.1.7.6 Lokale/globale Bibliotheken

Benutzerdefiniertes 2D-Symbol erstellen

- Erstellen Sie eine **CadnaR**-Datei, in der sich das entsprechende Bild als Hilfspolygon befindet. Gehen Sie dazu wie folgt vor:

- Zeichnen Sie das Symbol in **CadnaR**, z.B. unter Verwendung von Hilfspolygonen.

- Verschieben Sie das Objekt in die linke untere Raumecke (siehe Kapitel 6.2.11 "Transformation").

- Passen Sie die Raumgrundfläche an die Größe des Symbols an (Menü **Eigenschaften**|**Raum**, siehe Kapitel 9.1.4.2) und speichern Sie das Symbol als neue **CadnaR**-Datei.

Ein Symbol bestehend aus Hilfspolygonen

- Legen Sie im Menü **Tabellen**|**Bibliotheken (lokal)**|**Symbolbibliothek** eine neue Zeile an.

- Doppelklicken Sie in die eingefügte Zeile, um den Dialog **Bibliotheks-symbol** zu öffnen.

- Geben Sie für das zu importierende Symbol eine Bezeichnung ein. Diese wird anschließend in der Auswahlliste im Dialog **Symbol** angezeigt (siehe Kapitel 5.17).
Klicken Sie auf die Schaltfläche „Import“ und wählen Sie die als Symbol zu importierende **CadnaR**-Datei aus.

Schließen Sie den Dialog **Bibliothekssymbol** mit OK.

Wählen Sie das Objekt „Symbol“ aus dem Werkzeugkasten und ziehen Sie einen Rahmen an der gewünschten Stelle in der Projektdatei auf.

Wählen Sie im Dialog **Symbol** den Namen des Symbols aus dem Listenfeld aus. Das Bild erscheint dann im Monitor-Fenster.

Schließen Sie nach Eingabe aller Optionen den Dialog mit OK.

Das Symbol wird daraufhin in der Grafik platziert. Die Abmessungen des Symbols (z.B. Länge und Breite) müssen ggf. angepasst werden.
Es gibt zwei Möglichkeiten, um die Farbe und Strichstärke von selbst erstellten Symbole einzustellen.

2. Ist dagegen in der Ursprungsdarstellung die Option „verwende globale Darstellung“ aktiviert, so passt sich das Bild in Farbe und Strichstärke der Projektdarstellung an, in die es eingefügt wird, sofern diese Option auch im Dialog Bibliothekssymbol aktiviert ist. Ansonsten können Sie an dieser Stelle die Einstellungen noch individuell vornehmen.
Symbol 3D-Bibliothek

Fügen Sie dazu im Menü Tabellen|Bibliotheken (lokal)|Symbolbibliothek 3D eine neue Zeile ein (über das Kontextmenü oder über die EINFÜGEN-Taste). Nach Doppelklick auf die eingefügte Zeile wird der Dialog Bibliothekssymbol 3D geöffnet.

Dialog Bibliothekssymbol 3D (mit Koordinatenachsen XYZ = RGB)

Die eingegebene Bezeichnung wird in der Auswahlliste für 3D-Symbole im Dialog Symbol angezeigt.

Diese Option ist z.Z. noch ohne Funktion!

Diese Dialogbereiche sind z.Z. noch ohne Funktion!

Im Dialogbereich „Ausrichtung“ wird festgelegt, wie die vorgegebene Orientierung des importierten 3D-Objekts in CadnaR dargestellt werden soll. Dazu sind die Richtungen der Koordinatenachsen für die Vorderseite (Front) und für Oberseite (Up) anzugeben (je mit den Optionen +X, -X, +Y, -Y, +Z, -Z).

Bei Aktivierung dieser Option werden die Einstellungen für „Ausrichtung“ auf die 3D-Darstellung im Dialog bibliothekssymbol 3D angewandt. Mit dieser Funktion kann unmittelbar festgestellt werden, in welcher Orientierung das 3D-Symbolobjekt in Bezug auf die Koordinatenachse XYZ (Reihenfolge entspricht Farbfolge RGB) in der 3D-Spezialansicht von CadnaR angezeigt werden wird.
Kapitel 9 - Referenz
9.1.7.6 Lokale/globale Bibliotheken

Skalierung

Um das 3D-Symbol maßstabsgerecht anzuzeigen kann - unabhängig von der tatsächlichen Ausdehnung der importierten Geometrie - hier für eine der Koordinaten X, Y, Z eine Länge (m) festgelegt werden.

- Achse: Wählen Sie eine der Achsen XYZ aus.

Nach Klick auf dieses Symbol öffnet sich das Info-Fenster, in dem Textvariablen mit Daten der importierten OBJ-Datei, sowie Koordinaten- und Skalierungswerte gespeichert werden.

Beispiel

Es soll das 3D-Symbol eines Generator in der 3D-Spezialansicht angezeigt werden. Das Symbol soll sich an der Stelle einer eingegebenen Punktquelle befinden. Es liegt eine OBJ-Datei des Generators vor.

Gehen Sie wie folgt vor:

- Wählen Sie die Symbolbibliothek 3D im Menü Tabellen|Bibliotheken (lokal) aus.
- Fügen Sie über das Kontextmenü oder die EINFG-Taste eine neue Zeile ein und doppelklicken Sie in diese Zeile.
- Klicken Sie im Dialog Bibliothekssymbol 3D auf die Schaltfläche „Import“.
- Wählen Sie mit „Öffnen“ die OBJ-Datei des Generators aus.
- Geben Sie als Bezeichnung „Generator“ ein.

Aus der 3D-Darstellung im Dialog Bibliothekssymbol 3D ist die standardmäßige Ausrichtung des Objekts ersichtlich. Dabei entsprechen die Koordinatenachsen XYZ der Farbsequenz RGB (rot, grün, blau).
Zur Ausrichtung gehen Sie wie folgt vor:

- Klicken Sie unter **Front** auf **+X** um die vorgegebene x-Richtung in +x-Richtung zu orientieren.
- Klicken Sie unter **Up** auf **+Z** um die vorgegebene z-Richtung in +z-Richtung zu orientieren.

Zur Skalierung des Objekts sei bekannt, dass die Ausdehnung des Generators entlang der x-Achse 6 m beträgt. Gehen Sie wie folgt vor:

- Klicken Sie im Bereich „Skalierung“ auf **X** um die x-Richtung des Objekts als relevante Ausdehnung festzulegen.
- Geben Sie als „Länge“ 6 m ein.

Damit beträgt die 3D-Symbolausdehnung in der 3D-Spezialansicht 6 m entlang der x-Achse. Die Objektausdehnung in die anderen Koordinatenrichtungen wird mit demselben Maßstabsfaktor angepasst.

Objekt „Generator“, ausgerichtet & skaliert in der 3D-Symbolbibliothek
Dieses 3D-Symbol soll am Ort einer vorhandenen Punktquelle (1.5 m Höhe) in der 3D-Spezialansicht dargestellt werden. Gehen Sie wie folgt vor:

- Wählen Sie das Objekt **Symbol** aus dem Werkzeugkasten und ziehen Sie damit eine Fläche über der vorhandenen Punktquelle auf (geben Sie ggf. zuerst eine Punktquelle ein.).

Die Größe der aufgezogenen Fläche ist bei 3D-Symbolen irrelevant, da die Größe durch die Angabe im Bibliotheksobjekt bestimmt wird.

- Doppelklicken Sie auf den Rand des Symbolrahmens.
- Geben Sie als Mittelpunkt-Koordinaten des Symbols die Koordinaten der Punktquelle ein.
- Stellen Sie sicher, dass für „Fusspunkt“ eine relative Höhe von 0 m eingegeben ist (Standardwert).
- Schließen Sie den Dialog **Symbol**.

Das 3D-Symbol wird in der 2D-Plandarstellung nicht angezeigt, sondern nur der Symbolrahmen.
- Öffnen Sie die 3D-Spezialansicht mit der Tastenkombination STRG+3.
- Fahren Sie mit den Pfeiltasten und der Maus nah an das Generator-Symbol heran.
Durch „Hineinfahren“ in das 3D-Symbol kann festgestellt werden, dass sich die Punktquelle (relative Höhe 1.5 m) innerhalb des Generators befindet.
Textbausteine (lokal)

In Textbausteinen können Texte gespeichert werden, die bei Bedarf beim Ausdruck eines Berichts oder beim Export durch Angabe der Bezeichnung des Textbausteins in der Musterdatei ausgegeben werden. Das Schlüsselwort für die Musterdatei lautet:

#(Text, Bezeichnung)

Auf diese Weise kann z.B. die Firmenadresse, die Projektbezeichnung oder aber die Kundenadresse an der gewünschten Stelle in einem Bericht ausgegeben werden, ohne dass dazu die Musterdatei ständig geändert werden muss.

In dieser Tabelle können Textbausteine eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelklick in eine Tabellenzeile öffnet den Dialog **Textbaustein**.

\[
\begin{array}{l}
\text{Dialog Textblock (Menü Tabellen|Bibliotheken (lokal))}
\end{array}
\]

DIALOGOPTIONEN

Bezeichnung

Es kann eine beliebige Zeichenfolge eingegeben werden.

Bei der Bezeichnung werden Groß- und Kleinschreibung unterschieden.

Text

Dies ist der Text, der angezeigt wird, wenn die Bezeichnung innerhalb des Schlüsselworts #(Text, Bezeichnung) verwendet wird.

Beispiel: Der Satz "Sollten Sie zu den beschriebenen Berechnungen Fragen haben, wenden Sie sich bitte an #(Text, Ansprechpartner)." soll im Bericht ausgegeben werden mit Bezug auf den Textbaustein "Ansprechpartner". Der obige Satz innerhalb der Musterdatei wird um die im Text-
Kapitel 9 - Referenz
9.1.7.6 Lokale/globale Bibliotheken

baustein "Ansprechpartner" angegebene Person automatisch ergänzt. Die Musterdatei kann auch dann weiterverwendet werden, wenn ein anderer Ansprechpartner im lokalen Textbaustein einer anderen Datei eingetragen wurde.

zum Wechseln in den vorigen/nächsten Datensatz

erzeugt eine neue Datensatz-Zeile in der Tabelle unterhalb der aktuellen Datensatzes

<table>
<thead>
<tr>
<th>Bezeichnung Textbaustein</th>
<th>Erläuterung</th>
</tr>
</thead>
</table>
| CALC_TIME_V01 bis ..._V16 | Es werden folgende Informationen für jede aktive Variante gespeichert:
Time: Endzeitpunkt der Berechnung (s)
TimeInit: Anfangszeitpunkt der Berechnung (s)
TimeCalc: Berechnungsdauer (s) |
| VTB | (interner Benchmark) |
| RIA_PARM | letzte Berechnungsgröße, die in das 2D-Raster geschrieben wurde (Pegel Lp oder ein raumakustisches Gütemaß, siehe Kapitel 9.1.3.1, Registerkarte „RIA-Auswertung”). |
| MFWT | aus der mittleren freien Weglänge geschätzte Nachhallzeit T (s, in Oktaven) |
| AUTOCONF_RUNTIME | geschätzte maximale Laufzeit (s) |
| SIGMA_VOXEL_A_MEAN_V01 bis ..._V16 | arithmetisch gemittelte Standardabweichung über alle Voxel für jede aktive Variante (auf Basis des A-Pegels) |
| SIGMA_VOXEL_A_V01 bis ..._V16 | maximale Standardabweichung über alle Voxel für jede aktive Variante (auf Basis des A-Pegels) |
| SIGMA_IPKT_A_V01 bis ..._V16 | maximale Standardabweichung über alle Immisionspunkte für jede aktive Variante (auf Basis des A-Pegels) |
Störpegel (global)

In der Tabelle **Störpegel** können Schalldruckpegelspektren, die als Störpegelspektren bei der STI/STIPA-Berechnung (siehe Kapitel 9.1.3.1, Registerkarte „RIA-Auswertung“) verwendet werden sollen, eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelklick in eine Tabellenzeile öffnet den Dialog zur Spektreneingabe.

<table>
<thead>
<tr>
<th>SIGMA_ITER_V01 bis ...,V16</th>
<th>Anzahl Iterationen für jede aktive Variante</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGMA_TEILCHENZAHL_ V01 bis ...,V16</td>
<td>effektive Teilchenzahl bei letzter Iteration für jede aktive Variante</td>
</tr>
</tbody>
</table>

DIALGOPTIONEN

- **Bezeichnung**: beschreibende Spektrums-Bezeichnung
- **Schalldruckpegel Lp (lin)**: unbewertete Oktavwerte von 125 bis 8000 Hz
- **LwA**: A-bewerteter Gesamtpegel des Spektrums
- **Pfeiltasten < - >**: zum Wechseln in den vorigen/nächsten Datensatz

Spektrenwerte aus der Zwischenablage einfügen

Spektrenwerte aus der Zwischenablage, die durch Tabulator-Marken getrennt sind, können eingefügt werden. Platzieren Sie dazu den Cursor in das Feld, das den ersten Werte aufnehmen soll und drücken Sie die Tastenkombination STRG+v oder wählen Sie den Befehl **Einfügen** aus dem Kontextmenü.
In der Tabelle **Absorptionsgrad** können Schallabsorptionsspektren für Raumbegrenzungsflächen eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelklick in eine Tabellenzeile öffnet den Dialog **Produktdaten** (siehe unten).

Die Absorptionsbibliothek kann ergänzt werden, allerdings können die mitgelieferten Daten nicht verändert werden.

Wählen Sie dazu eine Konstruktion durch einen Klick mit der Maustaste aus und klicken Sie dann die Schaltfläche OK. Daraufhin wird die Konstruktion und deren Daten in den Dialog **Teilfläche** übernommen. Bei Klick auf "Abbruch" wird die Tabelle geschlossen, ohne eine Konstruktion auszuwählen.

Doppelklicken Sie in eine Zeile der Tabelle, um diesen Datensatz anzuzeigen. Der Dialog **Produktdaten** wird geöffnet (siehe unten).

Durch Drücken der EINF-Taste oder über das Kontextmenü der Tabelle wird eine neue Zeile eingefügt. Doppelklicken Sie anschließend in die neue Zeile, um den Datensatz im Dialog **Produktdaten** zu editieren.

Dialog Produktdaten

In diesem Dialog werden die Daten von in der Bibliothek vorhandenen Produkten/Konstruktionen angezeigt oder die Daten von neuen, nutzerdefinierten Konstruktionen eingegeben.

Dialog Produktdaten

DIALOGOPTIONEN

Herstellerkurzbezeichnung

Kürzel aus fünf Buchstaben für einen Produkthersteller (max. 5 Zeichen). Bei Auswahl eines Produkts aus der Bibliothek wird das Kürzel des entsprechenden Herstellers übernommen und angezeigt.

Hersteller

max. 24 Zeichen für Herstellerbezeichnung

Produktbezeichnung

Bei Eingabe eines neuen Produktes kann in dieses Feld eine Produktbezeichnung eingefügt werden (max. 49 Zeichen).

Bei Auswahl eines Produkts aus der Absorptionsbibliothek wird hier die Produktbezeichnung angezeigt. Hinter dem Produktnamen steht ggf. in Klammern ein Vermerk, wenn verschiedene Prüfanordnungen vermessen wurden.
Folgende Abkürzungen werden verwendet:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>zusätzlich mit Absorberauflage</td>
</tr>
<tr>
<td>a x b x c</td>
<td>Abmessungen des Elements (mm)</td>
</tr>
<tr>
<td>d</td>
<td>Dicke des Elements (mm)</td>
</tr>
<tr>
<td>Fb</td>
<td>Fugenbreite (mm)</td>
</tr>
<tr>
<td>h</td>
<td>Höhe des Elements (mm)</td>
</tr>
<tr>
<td>LA</td>
<td>Luftabstand von Rohwand (mm)</td>
</tr>
<tr>
<td>LF</td>
<td>Lochflächenanteil (%)</td>
</tr>
<tr>
<td>mD</td>
<td>mit zusätzlicher Deckschicht</td>
</tr>
<tr>
<td>R</td>
<td>Rastergröße (mm)</td>
</tr>
<tr>
<td>RA</td>
<td>Reihenmittenabstand (mm)</td>
</tr>
<tr>
<td>Sb</td>
<td>Schlitzbreite (mm)</td>
</tr>
<tr>
<td>Vk</td>
<td>mit Vlies kaschiert</td>
</tr>
</tbody>
</table>

Bei Auswahl eines Produktes aus der Absorptionsbibliothek wird angezeigt, ob es sich um ein geschlossenes (z.B. Platten) oder offenes (z.B. Kühlsensystem) handelt.

Bei Eingabe eines neuen, vom nutzerdefinierten Spektrums kann hiermit gekennzeichnet werden, ob es sich um ein offenes oder um ein geschlossenes System handelt. Handelt es sich um ein offenes System, welches sich vor einer weiteren Absorptionsfläche befindet, so wird bei Berechnung der Absorptionsgrad der Gesamtstruktur korrekt berechnet.

Bei offenen Konstruktion wird dieser Luftabstand bei der Berechnung des Raumvolumens und der Nachhallzeit berücksichtigt. Ist z.B. eine Raumhöhe von 6 m im Dialog Raumdaten (siehe Kapitel 9.1.4.2) und ein Luftabstand von 1000 mm eingegeben worden, wird das Volumen - für diese Teilfläche - mit der Raumhöhe von 7 m berechnet. Die Raumhöhe im Dialog Raumdaten ist somit immer die akustisch relevante Raumhöhe.
Elemente/m²

Dieser Wert kann zur Beschreibung der Anordnungsdichte von Einzelelementen (z.B. bei Kulissendecken oder bei einzelnen Schallschluckkörpern) angegeben werden. Für Kulissendecken in Reihenanordnung entspricht dies dem Abstand der Kulissenreihen.

Spektrum

Bei Auswahl eines Produktes aus der Absorptionsbibliothek wird das Terz- oder Oktavspektrum angezeigt. Bei einem neuen Produkt wird hier das Absorptionsgradspektrum eingegeben. Über die Option "nur Oktaven" kann die Eingabe auf Werte auf Oktaven beschränkt werden.

Datei mit nutzerdefinierten Konstruktionsdaten

Die Daten der nutzerdefinierten Konstruktionen werden bei Auswahl des Befehls **Datei|Neu** und beim Schließen von **CadnaR** in die Datei **default.alf** geschrieben. Diese befindet sich in demselben Verzeichnis wie die Datei **CADNAR.INI** (siehe Kapitel 2 - Installation, Abschnitt "INI-Dateien").

Um Daten mit einem anderen Nutzer auszutauschen, können Sie ihm diese Datei übermitteln.

 dục Gegenwärtig kann nur eine Nutzerdatei geladen, angezeigt oder aus dieser selektiert werden.
In der Tabelle **Schallleistung** können Schallleistungspegelspektren eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelklick in eine Tabellenzeile öffnet den Dialog **Spektrum**.

- **ID, Info-Fenster, Bezeichnung**: siehe Kapitel 5.1
- **Quelle**: Beschreibung der Datensatzherkunft
- **Typ**: Auswahl des Spektrumstyps. Es stehen zur Verfügung:
 - Lw: Durch die Wahl von Lw wird bestimmt, dass es sich bei dem eingegebenen Spektrum um Schallleistungspegelspektrum handelt.
 - Lw aus Lp+Fläche+Nahfeldkorrektur: Mit dieser Option wird die Bestimmung des Schallleistungspegels bei der Abstrahlung aus Öffnungen unterstützt. Messtechnisch wird das mittlere Schalldruckpegelspektrum im Öffnungsquerschnitt bestimmt. Die Berechnung erfolgt gemäß:

 \[L_W = L_p + \frac{10 \times \lg(S) + \text{Nahfeldkorrektur}}{10 \times \lg(4\pi r^2) + 10 \times \lg\left(\frac{n\%}{100\%}\right)} \]

mit der abstrahlenden Fläche S in m².
 - Lw aus Lp+Abstand+Kugelanteil: Bei ungerichteter Abstrahlung kann der Schallleistungspegel aus einer Messung des Schalldruckpegels Lp, des Quellabstands r und des Kugelanteils n% der Vollkugel, bestimmt werden gemäß:

 \[L_W = L_p + 10 \times \lg(4\pi r^2) + 10 \times \lg\left(\frac{n\%}{100\%}\right) \]

- **Spektrum**: Auswahl der Bewertung des einzugebenden Spektrums (linear, A, B, C, D). Das Umschalten auf andere Bewertungen hat auf das gespeicherte Spektrum keinen Einfluss. Wird hingegen bei gedrückter Shift-Taste die Bewertung umgeschaltet, so bleiben die Zahlenwerte unverändert.

- **Taschenrechner-Symbol**: Über diese Symbol kann das vorhandene Spektrum verändert werden (siehe Spektrum verändern, am Ende dieses Abschnitts).

- **Oktavbänder 31.5 bis 8000 Hz**: Geben Sie hier den Pegel im jeweiligen Oktav-Frequenzband ein. Beachten Sie dabei, das der Pegel 0 dB in der Akustik nicht gleichbedeutend mit "keine Eingabe" ist. Daher ist bei nicht vorhandenen Daten in einem Band das Leerzeichen zu verwenden oder das Feld bleibt leer. Damit wird die Ungültigkeit dieses Frequenzbands angezeigt.

- Fehlt ein Wert in einem Frequenzband bei einer in die Rechnung einbezogenen Quelle, so wird der Ergebnispegel für dieses Band in der Tabelle im Dialog Immissionspunkt nicht angezeigt ("-99").

- **Pfeiltasten <|-|->**: zum Wechseln in den vorigen/nächsten Datensatz

- **Schaltfläche "Neu"**: erzeugt eine neue Datensatz-Zeile in der Tabelle unterhalb der aktuellen Datensatzes (auch mit EINFG-Taste)

Spektrenwerte aus der Zwischenablage eingefügt

Spektrenwerte aus der Zwischenablage, die durch Tabulator-Marken getrennt sind, können eingefügt werden. Platzieren Sie dazu den Cursor in das Feld, das den ersten Werte aufnehmen soll und drücken Sie die Tastenkombination STRG+v oder wählen Sie den Befehl Einfügen aus dem Kontextmenü.
In der Tabelle **Schalldämmungen** können Transmissionsgrad- oder Schalldämm-Spektren für Hindernisse eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelmklick in eine Tabellenzeile öffnet den Dialog **Schalldämmungsspektrum**.

- **ID, Info-Fenster, Bezeichnung**: siehe Kapitel 5.1
- **Quelle**: Beschreibung der Datensatzherkunft
- **Typ**: Wählen Sie hier den Typ der Eingabewerte aus (Dämmung [dB] oder Transmission [%]).

tığı Intern werden beide Eingabewerte als Transmissionsgrade verwaltet, die eine höhere interne Genauigkeit (Nachkommastellen) als angezeigt aufweisen.

- **Taschenrechner-Symbol**: Über diese Symbol kann das vorhandene Spektrum verändert werden (siehe Spektrum verändern, am Ende dieses Abschnitts).
- **RA, 63-4000**: zeigt das A-bewertete Schalldämm-Maß auf Basis der eingegebenen Oktavwerte zwischen 63 und 4000 Hz an (entspricht der kombinierten Kenngröße Rw+C63-4000, siehe DIN EN ISO 717-1).

• **Spektrum 31.5 bis 8000 Hz**: Geben Sie hier das Schalldämmmaß bzw. den Transmissionsgrad im jeweiligen Oktavband ein. Beachten Sie dabei, das der Pegel 0 dB nicht gleichbedeutend mit "keine Eingabe" ist. Daher ist bei nicht vorhandenen Daten in einem Band das Leerzeichen zu verwenden oder das Feld bleibt leer.

* Fehlt ein Wert in einem Oktavband des eingestellten Frequenzbereichs bei einer in die Rechnung einbezogenen Quelle, so erfolgt eine Meldung, die auf die Unvollständigkeit des Spektrums hinweist. Wird die Meldung ignoriert (Schaltfläche "Weiter"), so wird ein Transmissionsgrad von 0% für dieses Frequenzband angenommen.

• **Pfeiltasten <+->**: zum Wechseln in den vorigen/nächsten Datensatz

• **Schaltfläche "Neu"**: erzeugt eine neue Datensatz-Zeile in der Tabelle unterhalb der aktuellen Datensatzes

Spektrenwerte aus der Zwischenablage einfügen

Spektrenwerte aus der Zwischenablage, die durch Tabulator-Marken getrennt sind, können eingefügt werden. Platzieren Sie dazu den Cursor in das Feld, das den ersten Werte aufnehmen soll und drücken Sie die Tastenkombination STRG+v oder wählen Sie den Befehl Einfügen aus dem Kontextmenü.

Absorptionen (lokal/global)

In der Tabelle **Absorptionen** können Schallabsorptionsspektren für Hindernisse eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelklick in eine Tabellenzeile öffnet den Dialog **Absorptionsspektrum**.

DIALOGOPTIONEN

• **ID, Info-Fenster, Bezeichnung**: siehe Kapitel 5.1

• **Quelle**: Beschreibung der Datensatzherkunft
• **Taschenrechner-Symbol 📕**: Über diese Symbol kann das vorhandene Spektrum verändert werden (siehe Spektrum verändern, am Ende dieses Abschnitts).

• **Spektrum 31.5 bis 8000 Hz**: Geben Sie hier den Schallabsorptionsgrad im jeweiligen Oktavband ein. Beachten Sie dabei, dass der Wert 0 nicht gleichbedeutend mit "keine Eingabe" ist. Daher ist bei nicht vorhandenen Daten in einem Band das Leerzeichen zu verwenden oder das Feld bleibt leer.

 Fehlt ein Wert in einem Oktav-Frequenzband des eingestellten Frequenzbereichs bei einer in die Rechnung einbezogenen Quelle, so erfolgt eine Meldung, die auf die Unvollständigkeit des Spektrums hinweist. Wird die Meldung ignoriert (Schaltfläche "Weiter"), so ist der Ergebnispegel für dieses Frequenzband im Dialog Immissionspunkt ungültig ("-99 dB").

• **Pfeiltasten <-|->**: zum Wechseln in den vorigen/nächsten Datensatz

• **Schaltfläche "Neu"**: erzeugt eine neue Datensatz-Zeile in der Tabelle unterhalb der aktuellen Datensatzes

Spektrenwerte aus der Zwischenablage, die durch Tabulator-Marken getrennt sind, können eingefügt werden. Platzieren Sie dazu den Cursor in das Feld, das den ersten Werte aufnehmen soll und drücken Sie die Tastenkombination STRG+v oder wählen Sie den Befehl **Einfügen** aus dem Kontextmenü.

Es kann eine abweichende Luftabsorption festgelegt werden. Legen Sie dazu in der lokalen Absorptions-Bibliothek ein Spektrum mit dem ID „SYS_ATM_ABSORB“ an und geben Sie die Werten in dB/km. Diese Werte werden dann solange verwendet, bis dieses Bibliothekseintrag gelöscht oder dessen ID umbenannt wurde.
In der Tabelle **Streugrade** können Streugradspektren für Hindernisse eingegeben und verwaltet werden. Neue Zeilen werden über das Kontextmenü der Tabelle erzeugt. Ein Doppelklick in eine Tabellenzeile öffnet den Dialog **Streugradspektrum**.

DIALOGOPTIONEN

- **ID, Info-Fenster, Bezeichnung**: siehe Kapitel 5.1
- **Quelle**: Beschreibung der Datensatzherkunft
- **Taschenrechner-Symbol**: Über diese Symbol kann das vorhandene Spektrum verändert werden (siehe **Spektrum verändern**, am Ende dieses Abschnitts).
- **Spektrum 31.5 bis 8000 Hz**: Geben Sie hier den Streugrad im jeweiligen Oktavband ein. Beachten Sie dabei, das der Wert 0 nicht gleichbedeutend mit "keine Eingabe" ist. Daher ist bei nicht vorhandenen Daten in einem Band das Leerzeichen zu verwenden oder das Feld bleibt leer.

授予 ein Wert in einem Oktav-Frequenzband des eingestellten Frequenzbereichs bei einer in die Rechnung einbezogenen Quelle, so erfolgt eine Meldung, die auf die Unvollständigkeit des Spektrums hinweist. Wird die Meldung ignoriert (Schaltfläche "Weiter"), so wird so wird ein Streugrad von 0% für dieses Frequenzband ange nommen.

- **Pfeiltasten <|-|->**: zum Wechseln in den vorigen/nächsten Datensatz
- **Schaltfläche "Neu"**: erzeugt eine neue Datensatz-Zeile in der Tabelle unterhalb der aktuellen Datensätze
Spektrenwerte aus der Zwischenablage, die durch Tabulator-Marken getrennt sind, können eingefügt werden. Platzieren Sie dazu den Cursor in das Feld, das den ersten Werte aufnehmen soll und drücken Sie die Tastenkombination STRG+v oder wählen Sie den Befehl **Einfügen** aus dem Kontextmenü.

Mit den in diesem Dialog vorhandenen Optionen kann das eingegebene Spektrum verändert werden.

Mit dieser Option kann nachträglich eine andere Bewertung auf das eingegebene Spektrum angewandt werden. Dabei bleibt die Bewertungseinstellung im Dialog **Spektrum** unverändert. Die Wahl einer bestimmten Bewertung im Dialog **Spektrum verändern** bewirkt also eine Umrechnung der Zahlenwerte und damit eine Änderung des eingegebenen Spektrums.

Diese Option ist nur für Schallleistungspegelspektren relevant.

Spektrum bewerten

Schreibt die eingegebene Konstante K in jedes Band

addiert die eingegebene Konstante K zu dem schon vorhandenen Wert arithmetisch

Addiert zu jedem Spektrumswert eine für jedes Frequenzband gleiche Korrektur, so dass der Gesamtpegel den Wert K ergibt.

Zahlenwert in dB
Kapitel 9 - Referenz
9.1.7.6 Lokale/globale Bibliotheken
9.1.7.7 Bibliothek-Manager

Über den Bibliothek-Manager im Menü Tabellen können Spektren aus anderen CadnaR-Dateien (Dateiendung *.cni) oder aus Bibliotheksdateien (Dateiendung *.dat) kopiert oder gelöscht werden.

- **Bibliothek:** Wählen Sie hier die Art der Bibliothek aus. Gegenwärtig stehen zur Verfügung:
 - Schallleistung
 - Schalldämmungen
 - Absorptionen
 - Streugrade
 - SET-S
 - SymLib (Symbolbibliothek)
 - Sym3DLib (3D-Symbolbibliothek)
• **Typ**: Auswahl der Bibliotheksart. Es stehen zur Verfügung:
 - Lokal
 - Global
 - Default: mit CadnaR ausgelieferte Spektren

• **Auswahl**: Mit dieser Option können entweder "Alle" Spektren/Objekte der betreffenden Bibliothek gewählt oder durch Eingabe einer Zeichenkette die Spektren gewählt werden, auf die die Zeichenkette im ID-Feld zutrifft.

• **Aktion**: Die ausgewählten Spektren oder Objekte können entweder kopiert oder gelöscht werden. Ist die Aktion "Kopieren nach" gewählt, ist das "Ziel" anzugeben.

• **Ziel**
 - Lokal
 - Global

• **Bei Namensgleichheit**: Durch Anklicken einer der Optionen wird festgelegt, wie mit dem Original bei Namensgleichheit verfahren werden soll.
9.2 Schlüsselwörter

Schlüsselwörter sind wesentlicher Bestandteil von Anweisungen, um die Berechnungsergebnisse bzw. eine Grafik in einer bestimmten Form zu drucken oder zu exportieren.

allgemeines Format:

#(Schlüsselwort, Parameter 1, Parameter 2, Parameter 3, ...)

Die optionalen Parameter 1, 2, ... können weggelassen werden.

Kapitel 9 - Referenz
9.2 Schlüsselwörter
9.2.1 Schlüsselwörter für Projektdaten

Folgende Arten von Schlüsselwörtern stehen zur Verfügung:

- **Einzelwerte:**

<table>
<thead>
<tr>
<th>Schlüsselwort</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>#(RaumL), #(RaumB), #(RaumH)</td>
<td>Raumlänge, -breite, -höhe</td>
</tr>
<tr>
<td>#(RaumVol)</td>
<td>Raumvolumen</td>
</tr>
<tr>
<td>#(RaumOfl)</td>
<td>Raumoberfläche</td>
</tr>
<tr>
<td>#(qStreu)</td>
<td>Streukörperdichte</td>
</tr>
</tbody>
</table>

- **pfad-spezifische Schlüsselwörter (aktueller Schallausbreitungspfad):**

<table>
<thead>
<tr>
<th>Schlüsselwort</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>#(PfadAnfX), #(PfadAnfY), #(PfadAnfZ)</td>
<td>Pfadanfang (x,y,z-Koordinate)</td>
</tr>
<tr>
<td>#(PfadEndX), #(PfadEndY), #(PfadEndZ)</td>
<td>Pfadende (x,y,z-Koordinate)</td>
</tr>
<tr>
<td>#(PfadName)</td>
<td>Pfadname</td>
</tr>
<tr>
<td>#(PfadComment)</td>
<td>Pfad-Kommentartext</td>
</tr>
</tbody>
</table>

- **Diagramme:**

<table>
<thead>
<tr>
<th>Schlüsselwort</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>#(DiaSak)</td>
<td>SAK-Diagramm</td>
</tr>
<tr>
<td>#(DiaTnach)</td>
<td>Nachhallzeit-Diagramm</td>
</tr>
<tr>
<td>#(DiaLegende)</td>
<td>Legende zu Diagramm</td>
</tr>
</tbody>
</table>
Sonstiges:

<table>
<thead>
<tr>
<th>#(BerMethode)</th>
<th>Berechnungsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>#(AusdruckNr)</td>
<td>Ausdrucknummer (wird bei jedem Ausdruck hochgezählt)</td>
</tr>
<tr>
<td>#(Projekt)</td>
<td>Projektbeschreibung</td>
</tr>
<tr>
<td>#(Adresse)</td>
<td>Adresse</td>
</tr>
</tbody>
</table>
9.2.2 Schlüsselwörter für Tabellen & Ausdruck

Folgende Bereiche stehen zur Verfügung:

- Tabellen, Struktur: #(Table, Parameter 1)

<table>
<thead>
<tr>
<th>Parameter 1</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfad</td>
<td>SAK-Einzelwerte des aktuellen Pfads</td>
</tr>
<tr>
<td>Teilfl</td>
<td>Teilflächen (in Oktaven)</td>
</tr>
<tr>
<td>TeilflTrz</td>
<td>Teilflächen (in Terzen)</td>
</tr>
<tr>
<td>PQ</td>
<td>Punktquellen</td>
</tr>
<tr>
<td>LQ</td>
<td>Linienquellen</td>
</tr>
<tr>
<td>FQ</td>
<td>Flächenquellen</td>
</tr>
<tr>
<td>FV</td>
<td>vertikale Flächenquellen</td>
</tr>
<tr>
<td>QQ</td>
<td>Quaderquellen</td>
</tr>
<tr>
<td>HQ</td>
<td>Hindernisquader</td>
</tr>
<tr>
<td>Schirm</td>
<td>Schirm</td>
</tr>
<tr>
<td>Imm</td>
<td>Immissionspunkte</td>
</tr>
<tr>
<td>IPK</td>
<td>Immissionspunktketten</td>
</tr>
<tr>
<td>SakParam</td>
<td>SAK-Parameter</td>
</tr>
<tr>
<td>RaumAlfa</td>
<td>mittlere Absorptionsgrade</td>
</tr>
<tr>
<td>BezSpek</td>
<td>Bezugsspektrum</td>
</tr>
<tr>
<td>Tnach</td>
<td>Nachhallzeit</td>
</tr>
</tbody>
</table>
9.2.2 Schlüsselwörter für Tabellen & Ausdruck

- nur für Ausdruck (nicht für Export):

<table>
<thead>
<tr>
<th>Schlüsselwort</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>#(if, ...)</td>
<td>Das Schlüsselwort ermöglicht das Ausdrucken auf Basis einer Bedingung.</td>
</tr>
</tbody>
</table>

 Struktur: #(if, Parameter 1, Parameter 2, Parameter 3)

Es wird geprüft, ob "Parameter 1" wahr ist. In diesem Fall wird "Parameter 2", ansonsten "Parameter 3" gedruckt.

 Beispiel: "... die Berechnung erfolgte nach #(if, Sabine, Sabine, Eyring) für ..."

Als Variablen für die Bedingung in "Parameter 1" stehen zur Verfügung:
- Sabine: Option "Sabine" in Berechnungskonfiguration gesetzt
- StreuZuA: Option "Streukörperabsorption einbeziehen" gesetzt
- LuftZuA: Option "Luftabsorption einbeziehen" gesetzt
- Flachraum: Das Verhältnis von größter zu kleiner Raumabmessung (L,B,H) ist größer 3.
- ZusatzVolumen: Das Volumen hinter offenen Absorbern wurde berücksichtigt.

| #(File, ...) | Das Schlüsselwort ermöglicht das Ausdrucken des Dateinamens. |

 Struktur: #(File, Parameter 1)

 Für "Parameter 1" stehen zur Verfügung:

 L oder D: Laufwerk/Drive
 P: Pfad
 N: Name (ohne Erweiterung)
 E: Erweiterung

 Beispiel: #(File, NE) druckt den Dateinamen und die Erweiterung (Standardwert).

#(FilePrint)	druckt den Dateinamen der Musterdatei aus
#(FileExpIn)	druckt den Namen der Export-Musterdatei aus
#(FileExpOut)	druckt den Namen der Export-Ausgabedatei aus
#(Font, ...)
Das Schlüsselwort ermöglicht das Definieren einer Schriftart.

Struktur: #(Font, Parameter 1, Parameter 2, Parameter 3)

Parameter 1: Schriftbezeichnung (Default: Arial)
Parameter 2: Größe in Punkten (Default: 10)
Parameter 3: Attribute: f: fett, k: kursiv, u: unterstrichen, s: durchgestrichen

Beispiel: #(Font, Courier, 12, f)

#(ZAbst, ...)
Das Schlüsselwort legt den Zeilenabstand fest.

Struktur: #(ZAbst, Parameter 1)

Parameter 1: Zeilenabstand in mm (wenn > 0)
Zeilenabstand in Prozent relativ zur Schriftgröße (wenn < 0)

Beispiel: #(ZAbst, -150) setzt Abstand auf 1.5-zeilig (Standardwert=100, d.h. 1-zeilig)

#(Scale, ...)
Das Schlüsselwort ermöglicht das Ausdrucken des Maßstabs.

Struktur: #(Scale, Parameter 1, Parameter 2)

Parameter 1: Anzahl Dezimalstellen
Parameter 2: Bezeichnung des Ausschnitts im PlotDesigner (d.h. nicht die Ausschnitt-Bezeichnung in CadnaR)

Beispiele:
- #(Scale) druckt den im CadnaR-Hauptfenster eingestellten Maßstab ohne Dezimalstellen aus
- #(Scale,1) druckt den Maßstab mit einer Dezimalstelle (e.g. 1:500.0)
- #(Scale,0,a) druckt den Maßstab des Ausschnitts „a“ ohne Dezimalstellen (e.g. 1:1000)
- #(Scale,2,b) druckt den Maßstab des Ausschnitts „b“ mit zwei Dezimalstellen (z.B. 1:2000.00)
#(Tabs, ...)
Das Schlüsselwort setzt maximal 9 Tabulatorenstops auf der Tabulatorleiste im definierten Abstand

Struktur: #(Tabs, Parameter 1 bis 9)

Parameter 1-9:
- Tabulatorposition im mm (wenn > 0)
- Tabulatorposition in "Zeichen" des aktuellen Zeichensatzes (wenn < 0)

Standard: Tabulatorpositionen alle 1.25 cm

Beispiele:
- #(Tabs, 15, 40) bedeutet, dass eine Tabulatormarke bei 1,5 cm und der zweite bei 4 cm auf der Tabulatorleiste gesetzt wird. Die restlichen Tabulatormarken werden automatisch im Abstand des zuletzt angegebenen Tabulatormarke gesetzt. In diesem Beispiel befindet sich der 3. bis 9. Tabulatormarke jeweils im Abstand von 2,5 cm.
- #(Tabs, -4) bedeutet, dass z.B. nach dem Wort "Text", die Tabulatormarke in dem Abstand positioniert wird, wie die 4 Zeichen des Wortes "Text" breit sind.

#(Tab, ...)
Das Schlüsselwort fügt eine Tabulatormarke ein (entspricht dem Drücken der TAB-Taste).

Struktur: #(Tab, Parameter 1)

Die Verwendung dieses Schlüsselwortes ist nur in Kopf- und Fußzeilen möglich (siehe Dialog Druckoptionen). Beim Editieren der Musterdateien, kann direkt die Tabulatortaste gedrückt werden. Es kann damit z.B. die Seitenzahl positioniert werden.

Beispiele:
- #(Tab) entspricht dem einmaligen Drücken der TAB-Taste
- #(Tab,10) entspricht dem zehn-maligen Drücken der TAB-Taste
- #(Tabs,150)#(Tab)Seite #(Seite) Es wird eine Tabulatormarke bei 15 cm eingefügt. Danach erfolgt ein Sprung an die Tabulatormarke und der Text "Seite" und die Seitennummer werden eingefügt.

#(NeueSeite)
fügt Seitenwechsel ein
<table>
<thead>
<tr>
<th>Schlüsselwort</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>#(Seite)</td>
<td>fügt aktuelle Seitennummer ein</td>
</tr>
<tr>
<td>#(Datum)</td>
<td>fügt aktuelles Datum ein</td>
</tr>
<tr>
<td>#(Zeit)</td>
<td>fügt aktuelle Uhrzeit ein</td>
</tr>
</tbody>
</table>
| #(Metafile, ...) | Dieses Schlüsselwort druckt ein Metafile aus.
Struktur: #(Metafile, Parameter 1)
Parameter 1:Dateiname (evtl. einschl. Pfad) |
| #(Bitmap, ...) | Das Schlüsselwort druckt die Hintergrund-Bitmap aus.
Struktur: #(Bitmap, Parameter 1, Parameter 2, Parameter 3)
Parameter 1:Dateiname (ggf. einschl. Pfad)
Parameter 2:horizontale Grösse in mm
Parameter 3:vertikale Grösse in mm |
| #(Variante, ...) | Das Schlüsselwort gibt die Kurzbezeichnung einer Variante aus.
Struktur: #(Variante, Parameter 1)
Beispiele:
• #(Variante): Kurzbezeichnung der aktuellen Variante
• #(Variante, 6): Kurzbezeichnung der sechsten Variante
(HINWEIS: Deaktivierte Varianten zählen mit.) |
| #(VarianteL, ...) | Das Schlüsselwort gibt die Langbezeichnung einer Variante aus.
Struktur: #(VarianteL, Parameter 1)
Beispiele analog wie vor |
| #(VarianteM, ...) | Das Schlüsselwort gibt den Text im Info-Fenster einer Variante aus.
Struktur: #(VarianteM, Parameter 1)
Beispiele analog wie vor |
Kapitel 9 - Referenz
9.2.2 Schlüsselwörter für Tabellen & Ausdruck

#(Range, ...) Das Schlüsselwort gibt den Inhalt eines Attributs des Ausschnitts aus, z.B. ID, BEZ oder MEMO_X (wobei X eine Variable im Info-Fenster ist) und kann in einer Textzelle des Plot-Designers verwendet werden oder in einer Textbox in der Datei, wobei der Inhalt des gewählten Attributs erst beim Drucken sichtbar wird. Ermöglicht die Vorbereitung eines Drucklayouts zur Ausgabe mehrerer Ausschnitte und deren individueller Beschreibungen.

#(Range) gibt standardmäßig den Inhalt des ID aus.

Struktur: #(Range, Parameter 1, Parameter 2)

Parameter 1: auszugebendes Attribut z.B. ID, BEZ (=Beschreibung, auch mehrzeilig, ID ist default

Beispiele:
• #(Range,ID,a1) zeigt den ID von Ausschnitt a1 an
• #(Range,MEMO_X,a2) zeigt die Variable x im Info-Fenster von Ausschnitt a2 an
• #(Range,Bez,a1) zeigt die Bezeichnung von Ausschnitt a1 an
• #(Range,Bez) zeigt die Bezeichnung des letzten aktiven Ausschnitts an
9.3 Objekt-Attribute

Nachfolgende Tabelle enthält die Objektattribute aller CadnaR-Objekte in alphabetischer Reihenfolge.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALFAL, ALFAR</td>
<td>Absorptionsgrad Alpha, links/rechts (oder Spektren-ID)</td>
</tr>
<tr>
<td>AREA</td>
<td>Fläche, Hüllfläche in m² (bei Spektren „Lw aus Lp+Fläche+Nahfeldkorrektur“)</td>
</tr>
<tr>
<td>AUTOVAL</td>
<td>Wert automatisch anpassen (Textrahmen, Pegelrahmen): „=aus, „x“=an</td>
</tr>
<tr>
<td>AUTOWINKEL</td>
<td>Winkel automatisch anpassen (Textrahmen, Pegelrahmen): „=aus, „x“=an</td>
</tr>
<tr>
<td>B</td>
<td>Breite Textrahmen</td>
</tr>
<tr>
<td>BEWERT</td>
<td>Bewertung des Schallpegel-Frequenzspektrums: linear (-); A-bewertet (A); B-bewertet (B); C-bewertet (C); D-bewertet (D)</td>
</tr>
<tr>
<td>BEZ</td>
<td>Objektbezeichnung</td>
</tr>
<tr>
<td>BEZRAW</td>
<td>--- nur zur internen Verwendung ---</td>
</tr>
<tr>
<td>BOLD</td>
<td>Textattribut fett: „=an, „x“=aus</td>
</tr>
<tr>
<td>BOXL / R / T / B</td>
<td>Bitmap / Ausschnitt: Koordinaten der linken unteren und der rechten oberen Ecke</td>
</tr>
<tr>
<td>CLOSED</td>
<td>Hilfspolygon: „=Polygon offen, „x“=P. geschlossen</td>
</tr>
<tr>
<td>CONS_CHECK</td>
<td>1 = Objekte wurden innerhalb der Konsistenzprüfung indiziert, 0 = Objekte wurden nicht indiziert</td>
</tr>
<tr>
<td>D2S</td>
<td>Abklingrate (dB) je Abstandsverdopplung (IP-Kette)</td>
</tr>
<tr>
<td>DISTANCE</td>
<td>Meßabstand in m (bei Spekteneingabe „Lw aus Lp + Abstand + Kugelanteil“)</td>
</tr>
<tr>
<td>EXCL</td>
<td>Rechengebiet von Berechnung ausschließen (x = wahr)</td>
</tr>
<tr>
<td>F_COLOR</td>
<td>Hilfspolygon (Füllung), Farbkode dezimal (z.B.: Arithmetisch „RGB(255,0,0)“ oder String-Ersetzung „255,0,0“ für rot)</td>
</tr>
<tr>
<td>Code</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>F_COLORB</td>
<td>Hilfspolygon (Füllung), blaue RGB-Komponente (0..255)</td>
</tr>
<tr>
<td>F_COLORG</td>
<td>Hilfspolygon (Füllung), grüne RGB-Komponente (0..255)</td>
</tr>
<tr>
<td>F_COLORR</td>
<td>Hilfspolygon (Füllung), rote RGB-Komponente (0..255)</td>
</tr>
<tr>
<td>F_COLORX</td>
<td>Hilfspolygon (Füllung), Farbkode hexadezimal</td>
</tr>
<tr>
<td>F_STYLE</td>
<td>Art der Füllung Nr. 0..X (Hilfspolygon)</td>
</tr>
<tr>
<td>F_TRANSP</td>
<td>Transparenz der Füllung, ein="1", aus="2" (Hilfspolygon)</td>
</tr>
<tr>
<td>FILE</td>
<td>Dateiname/Pfadname für Bitmap</td>
</tr>
<tr>
<td>FONT</td>
<td>Zeichensatz (Zeichenkette)</td>
</tr>
<tr>
<td>FONTCOLOR</td>
<td>Schriftfarbe, Farbkode dezimal 4-bit (z.B.: Arithmetisch „RGB(255,0,0)“ oder String-Ersetzung „255,0,0“ für rot)</td>
</tr>
<tr>
<td>FONTCOLORB</td>
<td>Schriftfarbe, blaue RGB-Komponente 4-bit (0..255)</td>
</tr>
<tr>
<td>FONTCOLORG</td>
<td>Schriftfarbe, grüne RGB-Komponente 4-bit (0..255)</td>
</tr>
<tr>
<td>FONTCOLORRR</td>
<td>Schriftfarbe, rote RGB-Komponente 4-bit (0..255)</td>
</tr>
<tr>
<td>FONTCOLORX</td>
<td>Schriftfarbe, Farbkode hexadezimal 4-bit</td>
</tr>
<tr>
<td>FONTSIZE</td>
<td>Textgröße in mm</td>
</tr>
<tr>
<td>FONTSIZEPT</td>
<td>Textgröße in points</td>
</tr>
<tr>
<td>GEN_RAYS</td>
<td>generiere Strahlen (Immissionspunkt): an = „x“, aus = „“</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>globale Darstellung (Hilfspolygon): an = „x“, aus = „“</td>
</tr>
<tr>
<td>GROULPASET</td>
<td>für Immissionspunkt: Textvariable mit ID des zu verwendenden SET-T-Moduls für LpA einer Quellgruppe (siehe Kapitel 5.9)</td>
</tr>
<tr>
<td>GW</td>
<td>Richtwert Immissionspunkt</td>
</tr>
<tr>
<td>ID</td>
<td>Objekt-Kodierung</td>
</tr>
<tr>
<td>ITALIC</td>
<td>Textattribut kursiv: „=an, „x“=aus</td>
</tr>
<tr>
<td>L</td>
<td>Länge Textrahmen</td>
</tr>
<tr>
<td>L_COLOR</td>
<td>Hilfspolygon (Linie), Farbkode dezimal (z.B.: Arithmetisch „RGB(255,0,0)“ oder String-Ersetzung „255,0,0“ für rot)</td>
</tr>
<tr>
<td>Variable</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>L_COLORB</td>
<td>Hilfspolygon (Linie), blaue RGB-Komponente (0..255)</td>
</tr>
<tr>
<td>L_COLORG</td>
<td>Hilfspolygon (Linie), grüne RGB-Komponente (0..255)</td>
</tr>
<tr>
<td>L_COLORR</td>
<td>Hilfspolygon (Linie), rote RGB-Komponente (0..255)</td>
</tr>
<tr>
<td>L_COLORX</td>
<td>Hilfspolygon (Linie), Farbkode hexadezimal</td>
</tr>
<tr>
<td>L_STYLE</td>
<td>Linienstil Nr. 0..X (Hilfspolygon)</td>
</tr>
<tr>
<td>L_WIDTH</td>
<td>Linienbreite in mm (Hilfspolygon)</td>
</tr>
<tr>
<td>LB_IN_M</td>
<td>Umschaltung „Abmessungen maßstabsabhängig“: „=aus „x“=an</td>
</tr>
<tr>
<td>LENAREA</td>
<td>3D-Länge oder Fläche (bei Linien-/Flächenquellen) - read only</td>
</tr>
<tr>
<td>LP</td>
<td>Ergebnispegel dB(A) Immissionspunkt</td>
</tr>
<tr>
<td>LPV01..LPV16</td>
<td>Ergebnispegel dB(A) Immissionspunkt für Variante XX</td>
</tr>
<tr>
<td>LPA</td>
<td>Arbeitsplatz-bezogener Emissions-Schalldruckpegel dB(A)</td>
</tr>
<tr>
<td>LPAS4M</td>
<td>Schalldruckpegel (dBA) in 4 m Abstand von der Schallquelle (IP-Kette)</td>
</tr>
<tr>
<td>LWA</td>
<td>Emissions-Schalleistungspegel dB(A)</td>
</tr>
<tr>
<td>LWS</td>
<td>längen-bzw. flächenbezogener Schallleistungspegel (dBA)</td>
</tr>
<tr>
<td>MARK</td>
<td>Aktivierungszustand (egal="", aktiviert="+", deaktiviert="-")</td>
</tr>
<tr>
<td>MEMO</td>
<td>schreibt/liest Info-Fenster (überschreibt vorhandenen Inhalt)</td>
</tr>
<tr>
<td>MEMOTXTVAR</td>
<td>Textvariable im Info-Fenster</td>
</tr>
<tr>
<td>NEARFIELD</td>
<td>Nahfeldkorrektur in dB (bei Spektren „Lw aus Lp+Fläche+Nahfeldkorrektur“)</td>
</tr>
<tr>
<td>NORM_LWA</td>
<td>Option "Spektrum auf LWA normieren" Ein/Aus, „=aus „x“=an</td>
</tr>
<tr>
<td>NOTSCREEN</td>
<td>Option „nicht abschirmend“ Ein/Aus, „=aus „x“=an (Quaderquelle, Hindernisquader)</td>
</tr>
<tr>
<td>PHI</td>
<td>Drehwinkel des Richtwirkungsvektors 2 um die +z-Achse (in der xy-Ebene)</td>
</tr>
<tr>
<td>PIC</td>
<td>--- nur zur internen Verwendung ---</td>
</tr>
<tr>
<td>Attribute</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>PO_AREA</td>
<td>2D-Fläche eines Polygons (m²), projiziert in die xy-Ebene</td>
</tr>
<tr>
<td>PO_AREA3</td>
<td>3D-Fläche eines Polygons (m³)</td>
</tr>
<tr>
<td>PO_CENTERX</td>
<td>x-Koordinate des Flächenschwerpunkts eines Polygons</td>
</tr>
<tr>
<td>PO_CENTERY</td>
<td>y-Koordinate des Flächenschwerpunkts eines Polygons</td>
</tr>
<tr>
<td>PO_CLOCK</td>
<td>Punktereihefolge bei Polygone, im Uhrzeiger = "1", gegen Uhrzeiger = "0" - read only</td>
</tr>
<tr>
<td>PO_COMPLEX</td>
<td>für geschlossene Polygone: 1 = Polygon ist selbst-schneidendend, 0 = nicht selbst-schneidendend - read only</td>
</tr>
<tr>
<td>PO_HABS</td>
<td>mittlere Höhe aller Polygonpunkte (= Summe z /Punktanzahl)</td>
</tr>
<tr>
<td>PO_HABSMAX</td>
<td>größte Höhe aller Polygonpunkte (bei „Höhe an jedem Punkt eingeben“)</td>
</tr>
<tr>
<td>PO_HABSMIN</td>
<td>kleinste Höhe aller Polygonpunkte (bei „Höhe an jedem Punkt eingeben“)</td>
</tr>
<tr>
<td>PO_LEN</td>
<td>2D-Länge eines Polygons (m)</td>
</tr>
<tr>
<td>PO_LEN3</td>
<td>3D-Länge eines Polygons (m)</td>
</tr>
<tr>
<td>PO_PKTANZ</td>
<td>Polygon-Punktanzahl</td>
</tr>
<tr>
<td>PREC</td>
<td>Anzahl Nachkommastellen (Pegelrahmen)</td>
</tr>
<tr>
<td>PSI</td>
<td>Drehwinkel um die positive Achse des Richtwirkungsvektors 1</td>
</tr>
<tr>
<td>QU</td>
<td>Kennung der dem IP zugewiesenen Schallquelle - read only -1 = keine Quelle zugewiesen) -- nur zur internen Verwendung --</td>
</tr>
<tr>
<td>QUELLE</td>
<td>Fundstelle der Daten (Bibliotheken)</td>
</tr>
<tr>
<td>RAHMEN</td>
<td>Rahmen bei Textrahmen „=aus, „x“=an</td>
</tr>
<tr>
<td>RKLASSE</td>
<td>Raumakustikklasse nach VDI 2569 (IP-Kette)</td>
</tr>
<tr>
<td>RD</td>
<td>Ablenkungsabstand STI<0.50 (IP-Kette)</td>
</tr>
<tr>
<td>RICHTW</td>
<td>Bezeichnung der Richtwirkung (bei Punktquellen)</td>
</tr>
<tr>
<td>RP</td>
<td>Vertraulichkeitsabstand STI<0.20 (IP-Kette)</td>
</tr>
<tr>
<td>Variablen</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>S_31 .. S_8000</td>
<td>linearer (unbewerteter) Oktavbandpegel 31 bis 8000 Hz, für Immissionspunkt und Quellen - read only</td>
</tr>
<tr>
<td>S_31 .. S_8000</td>
<td>linearer (unbewerteter) Oktavbandpegel 31 bis 8000 Hz, für Spektren</td>
</tr>
<tr>
<td>S_31V01 .. S_8000V01</td>
<td>linearer (unbewerteter) Oktavbandpegel 31 bis 8000 Hz Immissionspunkt für Variante V01, analog für Varianten V02 bis V16</td>
</tr>
<tr>
<td>SIN_31 .. S_8000</td>
<td>linearer (unbewerteter) Oktavbandpegel 31.5 - 8000 Hz (Eingabespektrum bei ODBC-Import)</td>
</tr>
<tr>
<td>SPHEREPART</td>
<td>Kugelanteil in % (bei Spektren eingabe „Lw aus Lp + Abstand + Kugelanteil“)</td>
</tr>
<tr>
<td>STREUL, STREUR</td>
<td>Streugrad, links/rechts (oder Spektren-ID)</td>
</tr>
<tr>
<td>STRIKEOUT</td>
<td>Textattribut durchgestrichen: „=aus, „x“=an</td>
</tr>
<tr>
<td>STUFESA</td>
<td>Stufe der Schallausbreitung nach VDI 2569 (IP-Kette)</td>
</tr>
<tr>
<td>STYPI</td>
<td>Spektrumtyp: 0 = Lw 1 = Lw aus Lp + Fläche + Nahfeldkorrektur 2 = Lw aus Lp + Abstand + Kugelanteil</td>
</tr>
<tr>
<td>TEMI</td>
<td>Emission der Quelle (Referenz oder Wert)</td>
</tr>
<tr>
<td>THETA</td>
<td>Drehwinkel, den der Richtwirkungsvektor 1 mit der +z-Achse einschließt</td>
</tr>
<tr>
<td>TRANSL</td>
<td>Transmissionsgrad (oder Spektren-ID)</td>
</tr>
<tr>
<td>UNDERLINE</td>
<td>Textattribut unterstrichen: „=an, „x“=aus</td>
</tr>
<tr>
<td>VAL</td>
<td>fester Wert (Pegelrahmen)</td>
</tr>
<tr>
<td>WINKEL</td>
<td>Drehwinkel in Grad</td>
</tr>
<tr>
<td>X</td>
<td>x-Koordinate</td>
</tr>
<tr>
<td>X1</td>
<td>x-Koordinate des 1. Objektpunkts</td>
</tr>
<tr>
<td>X2</td>
<td>x-Koordinate des 2. Objektpunkts</td>
</tr>
<tr>
<td>Y</td>
<td>y-Koordinate</td>
</tr>
<tr>
<td>Y1</td>
<td>y-Koordinate des 1. Objektpunkts</td>
</tr>
</tbody>
</table>
Kapitel 9 - Referenz

9.3 Objekt-Attribute

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2</td>
<td>y-Koordinate des 2. Objektpunkts</td>
</tr>
<tr>
<td>Z</td>
<td>z-Koordinate</td>
</tr>
<tr>
<td>Z1</td>
<td>z-Koordinate des 1. Objektpunkts (Anfangshöhe)</td>
</tr>
<tr>
<td>Z2</td>
<td>z-Koordinate des 2. Objektpunkts (Endhöhe)</td>
</tr>
</tbody>
</table>
Index

Numerics

3D-Ansicht 341
 drehen 341
 Tastaturbefehle 344
 verschieben 341
 zoomen 341
3D-Symbol 454
 Optionen 137
3D-Symbolbibliothek 454

A

Abbruchkriterium SAK 323
Abkürzungen (Produktdaten) 465
Abmessungen maßstababhängig 130
Abmessungen s. Registerkarte Plot-Designer
Absorption (Schaltfläche) 77
Absorptionen (für Hindernisse) 470
Absorptions-Diagramm 358
Absorptionsgrad (für Raum) 463
Abstandsbereiche 364
Abstandsreihe 363
affine Transformation 181
Aktivierung
 Variante 259
Aktivierungszustände 70, 261
Allgemein s. Registerkarte Plot-Designer
Ansicht Teilfläche 357
äquivalente Absorptionsfläche 323
Arbeitsfläche 37
Attribut verändern 155

B

Beispiel
 Gruppe (Muster) 260
 Gruppen & Teilsummenpegel 244
 Variante 260
Beliebige Transformation 182
Berechnung (Menü) 315
Berechnungsprotokoll 331
Berechnungsverfahren
 auswählen 315
 Diffusfeld-Verfahren 229
 Spiegelquellen 217, 316
 Spiegelquellen --> Teilchen 212, 316
 Teilchenmodell 315
Bericht drucken 307
Beugung
 horizontal 320
 vertikal 320
Bezeichnung 69
Bezugsspektrum 324
 nutzerdefiniert 324
 VDI 3760 Standard 324
BIA-Abstände 363
Bibliotheken
 Absorptionen (für Hindernisse) 470
 Absorptionsgrad (für Raum) 463
 Richtwirkung 445
 Schalldämmungen 469
 Schallleistung 467
 Streugrade 472
 Textbausteine 460
Bibliothek-Manager 475
Blattgröße 287

C

CadnaR
 Anwendungsbereiche 11
 beenden 268
 Hauptfenster 37
 installieren 27
 Leistungsmerkmale 14
 Neue Funktionen 17
 starten 37
Container 294

D

Darstellung (Dialog) 379
Datei
 Beenden 268
 cadnar.log 331
 Datenbank 266
 default.alf 466
 Import 266
 Neu 265
Öffnen 265
 Speichern 265
 Datenbank (ODBC) 266
 deaktivierte Objekte 381
 Dehnungsmodus 56
 Dezimaltrennzeichen 397
 Diagramme SAK/T (Menü Eigenschaften) 359
Dialog
 Objekte verändern 147
 Produktdaten 464
 Rasterarithmetik 411
 Schallausbreitungspfade|Nachhallzeiten 369
 Spektrum verändern 473
 Teilfläche 355
Diffusfeld 316
DL2 Pegelabnahme 364
DLf Pegelüberhöhung 364
Dongle-Konfiguration umkodieren 31
Drehung + Verschiebung 180
Drehwinkel 83
Druckbereich 289
Drucken
 Bericht 307
 Grafik 287
Druckvorschau 290
Duplizieren 163
 durch Transformieren 179
 Objekt 63

E

Echogramme und Abklingkurven berechnen 327
Eigenschaften
 Statuszeile 38
Einfügen
nachher (Tabelle) 431
vorher (Tabelle) 431
Eingabe
 Dehnungsmodus 56
 Polygonpunktmodus 56
Elemente/m² 356
Emissionsspektrum 73
Erzeuge Etikett 189
Erzwinge rechte Winkel 167
Erzwinge Rechteck 165
Etikett
 Attribut auswählen 190
 Größe/Schriftart festlegen 190
 Option „benutzerdefiniert“ 192
 Option „Textvariable“ 191
Export
 Bericht 285
 Richtwirkung 448
F

Fangradius
 in m 389
 in Pixel 389
Farbverlauf 404
Flächen gleichen Schallpegels 403
Flächenquelle 89
Flächenraster, Oversampling 403
Formeln und Operatoren 413
Frequenzbereich 321
G

Generiere Strahlen 106
geschlossen/offen 356
Grafik
 drucken 287
Maßstab 43
Größenänderung
 in Sprüngen 57
 symmetrisch 57
 symmetrisch in Sprüngen 57
Gruppe
 Aktivierungszustand 261
 Muster (Beispiel) 260
 per ObjectTree 247
H

Hauptfenster 37
 Statuszeile 38
 Werkzeugkasten 41
Hilfspolygon 133
 Farbe ändern 158
Hindernisquader 97
Höhenlinie 141
Höhenpunkt 139
horizontale Beugung 320
Hüllfläche
 auswerten 442
 generieren 440
Hyperlink 72
I

ID 69
 Aktivierungszustände 70
 Regeln für 70
Immissionspunkt 101
 ist Arbeitsplatz 102
LpA
 aus Einzelquelle 102
 aus Quellgruppe 102
 aus SET-T-Modul 103
Richtwert 106
Immissionspunktabstand (Raster) 401
Immissionspunkte
 berechnen 335
 importieren 439
 interpolieren 420
Immissionspunktketten
 Auswertung 377
 berechnen 336
 Diagramme 120
 Gütemaße 115
 Pfadbeurteilung VDI 2569 118
Import 266
 Immissionspunkte 439
 Nachhallzeit 367
 Richtwirkung 446
 Schallausbreitungskurve 362
Importformat
 ASCII-LibObj 277
 ASCII-Objects 274
 CadnaR (*.cni) 269
 DWG (*.dwg) 271
 DXF (*.dxf) 273
 Sketchup SKP (*.skp) 273
Info-Fenster 71
Infos einfügen 372
INI-Datei editieren 439
INI-Dateien 28
Installation 27
 Dongle-Konfiguration umkodieren 31
 Dongle-Treiber 27
 INI-Dateien 28
 V2C-Datei 31
Interaktive Transformation 183

K
Kombobox
 als Steuerelement 49
Konfiguration öffnen/speichern 316
Konsistenzprüfung 339, 407
Konstruktionsdaten, nutzerdefinierte 466
 Kontextmenü 203
 in Tabellen 431
Kontrollkästchen 49
Koordinatengitter 385
Kopieren (Menü Bearbeiten) 313
Kulissendechen 354
Kurvenanalyse 364, 365

L
Laufzeit, maximale 318
Layer 387
Legende (Raster) 404
Linien gleichen Schallpegels 403
Linienquelle 85
Listenfeld
 als Steuerelement 49
Löschen rückgängig 67
Luftabsorption 321
Luftabstand (mm) 356

M
Markierungsgröße 397
Maßstab 43
 Zoom + / - 43
 Zoom Umgriff 44
Maustasten 47
Mauseingabe 53
maximale Laufzeit 318
Menü Tabellen
 Bibliothek-Manager 475
 Sonstiges 439
Multi-Threading 207
Musterdatei
 auswählen 285
 erstellen 311
 mitgelieferte 312

Nachhallzeit importieren 367
Nachhallzeit-Diagramm 366
 editieren 368
Neue Funktionen 17
 nur Oktaven 352, 355
 nutzerdefinierte Konstruktionsdaten 466

ObjectTree
 Anzeige der Gruppen 252
 Definition 247
 Gruppen verändern 254
 Objekte positionieren 248
 Symbolleiste 250
Objekt
 drehen 61
 drehen & duplizieren 61
 in Stufen drehen 61
 mehrfach duplizieren 63
Objektabelle
 Spalte einfügen 426
Objektdarstellung 379
Objekte
 Ausschnitt 131
 Daten editieren 65
 deaktiviert 381
 duplizieren 63
 eingeben 53
 Flächenquelle 89
 Gemeinsame Eingabedaten 69
 grafisch editieren 55
 Hilfspolygon 133
 Hindernisquader 97
 Höhenlinie 141
 Höhenpunkt 139
 Immissionspunkt 101
 Linienquelle 85
 löschen 67
 Löschen rückgängig 67
 Pegelrahmen 127
 PolyMesh 143
 Punktquelle 81
 Quaderquelle 95
 Rechengebiet 113
 Schirm 99
 Symbol 135
 Textrahmen 129
 verschieben 59
 vertikale Flächenquelle 93
Objekte verändern 147
 Aktion 149
 Aktivierung 149
 Attribut verändern 155
 Bedingung 151
 Bereich 149
 Duplizieren 163
 Erzeuge Etikett 189
 Erzwinge rechte Winkel 167
 Erzwinge Rechteck 165
 Löschen 153
 Objektarten 152
 Paralleles Objekt 195
Transformation 179
Umwandeln in 187
Objektfang 389
Objektsymbol aktivieren 41
Objektabelle öffnen 42
Online-Hilfesystem 51
Operatoren 413
Option "nur Oktaven" 352, 355
Option "Spektrum auf LwA normieren" 74
Optionen
für Teilchen-Verfahren 317
Optionen für 3D-Symbole 137
Optionsfeld
als Steuerelement 49
Ordnung
für Spiegelquellen-Verfahren 320
für Teilchenmodell 318
Orientierung Teilfläche 357
Originalseitenverhältnis 136
Oversampling 403

P
Paralleles Objekt 195
Pegelabnahme DL2 364
Pegelrahmen 127
Abmessungen maßstababhängig 128
Ausrichtung 128
Pegelüberhöhung DLF 364
Pfadgeometrie SAK 370
phi (Drehwinkel) 83
Ping-Pong, Teilchen 347
Plot-Designer 291
Ausschnitt für 131
Container 294
Symbolleiste 294
Vorlagen DIN 294

Q
Quaderquelle 95
nicht abschirmend 96, 97
nicht emittierende Seiten 96

R
Rahmen
Originalseitenverhältnis 136
Rahmen s. Registerkarte Plot-Designer
Ränder s. Registerkarte Plot-Designer
Raster
berechnen 407
Darstellung 403
Darstellungsbereich 404
Farben laden/speichern 405
Farbverlauf 404
Klassen anpassen 405
löschen 409
öffnen 409
speichern 409
Spezifikation 401
Rasterarithmetik
 Dialog 411
Rasterinterpolation 321
Rasterpunkte darstellen 404
Rasterstatistik 415
Rasterwerte interpolieren 420
Raum
 Abmessungen 349
 Raumdaten 349
 Streukörperdichte 350
Raumabmessungen 349
Raumakustische Gütemaße 329
RAY (Strahl-ID) 106
Rechengebiet 113
 ausschließen 113
Registerkarte
 Konfiguration
 Allgemein 321
 Berechnung 315
 RIA-Auswertung 327
 SAK 323
 Teilchenmodell 325
Plot-Designer
 Abmessungen 302
 Allgemein 301
 Rahmen 304
 Ränder 303
 Stil 304
Regressionsgeraden 365
Reihenfolge Teilflächen 354
relative Punkteingabe 54
Richtwert 106
Richtwirkung
 exportieren 448
 importieren 446
 in der Bibliothek 445
 Transformation 179
 Typ CadnaA 448
 vereinfacht 445
Rückgängig (Menü Bearbeiten) 313
S
SAK/T berechnen 335, 337
SAK-Diagramm 361
 editieren 364
Schallausbreitung.pfade|Nachhallzeiten (Dialog)
 369
Schallausbreitungskurve 361
 importieren 362
Schalldämmungen (Bibliothek) 469
Schallleistung (Bibliothek) 467
Schaltflächen in Tabellen 423
Schirm 99
Schlüsselwörter
 allgemeines Format 477
 für Projektdaten 479
 für Tabellen & Ausdruck 481
Segmentlänge 397
Seitenränder 287, 307
Sentinel Admin Control Center 31
Single-.Threading 207
Sonstiges 439
Spalte einfügen 426
Spaltenbreite einstellen 423
Spektrum auf LwA normieren 74
Spektrum verändern 473
Spezifikation (Voxelgitter) 419
Spiegelquellen --> Teilchen 212, 316
Spiegelquellen s. Berechnungsverfahren
Sprache
 ändern 35
 feste Sprache einstellen 29
Sprache auswählen 395
Statistik (Raster) 415
statistische Berechnung 316
Statuszeile 38
 anzeigen 393
Stereo 3D 343
Stereoskopisches 3D 344
Steuerelemente 49
 Kombobox 49
 Kontrollkästchen 49
 Listenfeld 49
 Optionsfeld 49
STI/STIPA
 Störpegel für 328
Stil s. Registerkarte Plot-Designer
Störpegel für STI/STIPA 328
Strahlen löschen 439
Strahlfarbe aus Pegel 398
Streugrade (Bibliothek) 472
Streukörperdichte 350
 berechnen 350
Streuung (Schaltfläche) 77
Symbol 135
 Originalseitenverhältnis 136
Symbolgröße 381
Symbolleiste 38, 39
 anzeigen 393
 im Dialog Diagramme SAK/T 359
 Maßstab 43
 Plot-Designer 294
Synchronisiere Grafik 340
Synchronisierung 67, 422
Systemanforderungen 21

T

Tabelle
 Spaltenbreite einstellen 423
 Teilpegel 257, 437
Tabelle Schallquellen (bei IP) 102
Tabellen
 Datensatz eingeben 54
 Kontextmenü 431
 Schaltflächen 423
Tabellen (Menü) 421
Tabellenspalte editieren 428
Tastatur 45
Tastatureingabe 54
Tastenkombination 341
Teilchenmodell s. Berechnungsverfahren
Teilchen-Pingpong 347
Teilchen-Visualisierung 391
Teilchenzahl (Emission) 321
Teilfläche
 Ansicht 357
 Dialog 355
 Orientierung 357
Teilflächen
 editieren 353
 Reihenfolge 354
 Überlappung von 354
Teilflächenansicht 357
Teilflächenliste 353
Teilpegel 257
 als Tabelle 437
Teilpegelliste
 für alle Quellen 258
 gruppen-spezifisch 257
Textbaustein
in Bibliothek 460
Textbausteine
 automatisch generiert 461
Textrahmen 129
 Abmessungen maßstababhängig 130
 Ausrichtung 130
 Winkel 129
theta (Drehwinkel) 83
Totalbelegung 356
Transformation 179
 affine 181
 beliebige 182
 Drehung + Verschiebung 180
 Interaktive Transformation 183
 Option "Original behalten" 179
 Richtwirkungsvektor 179
Transmission (Schaltfläche) 77
Transparent (Objektdarstellung) 381

U

Umwandeln in 187
Updates 28

V

V2C-Datei 31, 33
Variante 259
 aktivieren 259
 auswählen 262
 Beispiel 260
 berechnen 262
 verwenden 259
VDI 3760 316
vertikale Beugung 320
vertikale Flächenquelle 93
Visualisierung (Teilchen) 391

Voxelgitter
 berechnen 419
 Immissionspunkte interpolieren 420
 löschen 420
 Rasterwerte interpolieren 420
 Spezifikation 419

W

Werkzeugkasten 38, 41
 mit Programmfenster verschieben 399
 Objektsymbol aktivieren 41
 Objekttabelle öffnen 42
 Zoom + / - 43
 Zoom Umgriff 44
Winkel
 Ausschnitt 131
 Pegelrahmen 128
 Textrahmen 129

Z

Zeichenreihenfolge von Objekten 387
Zellen-Eigenschaften (Plot-Designer) 301
Zellentypen (Plot-Designer) 296
Zoom
 Plus/Minus + / - 43
 Umgriff 44
Zwischenablage 313